Chapter 5

Proof of the Hawking-Penrose Singularity Theorems

5.1 Proof of the Hawking-Penrose Singularity Theorem

5.1.1 Introduction

The singularity theorems are based on very powerful indirect arguments which show that black hole and cosmological singularities are generic in classical general relativity. Gives us confidence in the big bang. The classical theory predicts its own breakdown.

In the singularity theorems one does not define a singularity as a place the curvature diverges, one characterises singularities as the “holes” left behind by the removal of their presence. These “holes” should be detectable by the fact that their will be geodesics that cannot be extended any further in at least one direction but still only have a finite range of affine parameter. In the singularity theorems one does not directly establish that the curvature diverges, but merely that there is an obstruction of should become sort to timelike or null geodesics being extendable within the spacetime to infinite length. However, it is not always true that this obstruction indeed arises because of the presence of diverging curvature, and the theorem does not directly show this.

Of course one can just “artificially” remove points from spacetimes which would then be considered to be singular. However, we can avoid such possibilities by restricting consideration only to spacetimes which are not part of a larger spacetime.

Spacetime itself (the structure \((\mathcal{M},g)\)) consists entirely of regular points at which \(g\) is well behaved.

Definition A spacetime is singular if it is timelike of null geodesically incomplete but cannot be embedded in a larger spacetime.
Energy condition implies a tendency for geodesics to converge, that is, it guarantees that gravity is attractive. Causality conditions prevents geodesics from converging through causality violations.

Figure 5.1: Sir Roger Penrose and Stephen Hawking. Initiated by Penrose, Penrose and Hawking, together with Robert Geroch, contributed much of the work on the existence of spacetime singularities with the use of point-set topological methods.

5.1.2 Some Basic Terminology

Terms we’ll encounter

Properties of the spacetime:

Spacetime time orientable: At every point there are two cones of timelike vectors. The Lorentzian manifold is time orientable if a continuous choice of one of the cones, termed future, can be made so it doesn’t "turn upon itself" and be inconsistent.

Spacetime is Hausdorff: Events can be isolated.

Spacetime metric is non-degenerate: The metric is non-degenerate.
Paths:
Curves:
Trips:

Causally defined sets:

Chronological sets, I^+ and J^+: $I^+(x) := \{ y \in \mathcal{M} : x \ll y \}$ is called the chronological future of x; $I^-(x) := \{ y \in \mathcal{M} : y \ll x \}$ is called the chronological past of x; $J^+(x) := \{ y \in \mathcal{M} : x \preceq y \}$ is called the causal future of x; $J^-(x) := \{ y \in \mathcal{M} : y \preceq x \}$ is called the causal past of x. The chronological future of a set $S \subseteq \mathcal{M}$ is defined by the set $I^+(S) = \{ y \in \mathcal{M} : x \ll y \text{ for some } x \in S \}$. Similar definitions hold for $I^-(S)$, $J^+(S)$ and $J^-(S)$.

Achronal sets: A set $S \subseteq \mathcal{M}$ is achronal if no two points of S are timelike related.

Achronal boundaries

Edge of a closed achronal set:

![Edge of a closed achronal set](image)

Figure 5.4: (a) A closed achronal set with edge. (b) A closed achronal set without edge.

Special regions:

convex normal neighbourhoods: An open set U is said to be a convex normal neighbourhood if for any $p, q \in U$ there is a unique geodesic lying in U joining p to q.

godesically convex:
simple regions:

Causality conditions:

All spacetimes in general relativity locally have the same structure qualitative causal structure as in special relativity, globally spacetimes may not be not be “causally well behaved”. Here are some of the more important conditions:
Chronology condition: There are no closed timelike curves.

Causality condition: Closed null curves can exist even when the chronology condition is satisfied, this motivates the definition of the causality condition. The causality condition is satisfied when there are no closed causal curves.

Strong causality: there are no “almost closed” causal curves. This condition will be of particular importance for the singularity theorem.

Future (past) distinguishing: Any two points with the same chronological future (past) coincide, i.e., (\mathcal{M}, g) is future distinguishing at $p \in \mathcal{M}$ if $I^+(p) \neq I^+(q)$ for $q \neq p$ and $q \in \mathcal{M}$.

stable causality: Stable causality is violated when a spacetime is "on the verge" of having closed timelike curves in the sense that an arbitrary small perturbation of the metric can produce a new spacetime that violates the chronology condition. See fig(5.1.2).

Global hyperbolicity: One definition of globally hyperbolic is that for (\mathcal{M}, g) \mathcal{M} is strongly causal and $J^+(p) \cap J^-(q)$ is compact for any $p, q \in \mathcal{M}$.

![Diagram of null cones](image)

Figure 5.5: The $h-$null cone contains more timelike vectors than the $g-$null cone so there is more likelyhood to find closed timelike curves in (\mathcal{M}, h) than in (\mathcal{M}, g).

Topology of the manifold:

topological base:

- **compact:** Compact basically mens the space is finite in size. It is easily shown that compact spacetimes necessarily have closed timelike curves and so are ruled out.

- **paracompactness:** A space may be non-compact, but if we have an open cover then we can “re-fine” it in a manner that still retains its finiteness properties locally on the space. If a manifold admits a Lorentz metric, it is paracompact. A manifold admits a positive definite metric if and only if it is paracompact. The availability of a positive-definite metric is used in the singularity theorems.

- **Alexanderoff topology:** The sets $\{I^+(a) \cap I^-(b) : a, b \in \mathcal{M}\}$ are open and form a basis for a topology on \mathcal{M}, called the Alexanderoff topology. An important result involved in the proof of the singularity theorems is that when a spacetime is strongly causal, the Alexanderoff topology coincides with the topology of the spacetime.

Domains of dependence: Let S be an achronal subset of \mathcal{M}. Future and past domains of dependence on S and the total domain of dependence of S, respectively are defined as follows:

- $D^+(S) = \{x \in \mathcal{M} : \text{every past endless causal curve from } x \text{ intersects } S\}$
- $D^-(S) = \{x \in \mathcal{M} : \text{every future endless causal curve from } x \text{ intersects } S\}$
- $D(S) = \{x \in \mathcal{M} : \text{every endless causal curve containing } x \text{ intersects } S\}$

Obviously, $D(S) = D^+(S) \cup D^-(S)$
Cauchy horizons: The future, past or total Cauchy horizon of an achronal closed set S is defined as (respectively):

$$H^+(S) = \{ x \in \mathcal{M} : x \in D^+(S) \text{ but } I^+(x) \cap D^+(S) = \emptyset \},$$

$$H^-(S) = \{ x \in \mathcal{M} : x \in D^-(S) \text{ but } I^-(x) \cap D^-(S) = \emptyset \},$$

$$H(S) = H^+(S) \cup H^-(S)$$

Cauchy surface: A Cauchy hypersurface for \mathcal{M} is a non-empty set S for which $D(S) = \mathcal{M}$

Partial Cauchy surface:

Global hyperbolicity:

Energy conditions:

Weak energy condition: The weak energy condition states that $T_{ab}v^a v^b \geq 0$ for any timelike vector v.

Strong energy condition: We say that an energy-momentum tensor T satisfies the strong energy condition if, for every null vector v, $T_{ab}v^av^b \geq 0$. Combined with the field equations the strong energy condition implies that for all timelike v, $R_{ab}v^av^b \geq 0$.

Generic condition: The strong energy condition holds. If every timelike or null geodesic contains a point where there is some curvature that is not specially aligned with the geodesic. The generic condition is not satisfied by a number of known exact solutions, however, they are rather special. The generic condition specifically is that $t[J_R]_{[a}v^a[R^b]_{c]e}v^e \neq 0$ where t is the tangential vector. If the generic energy condition holds, each geodesic will encounter a region of gravitational focusing. As we will prove later, this will imply that there are pairs of conjugate points if one can extend the geodesic far enough in each direction.

Closed trapped surface: At a normal closed surface, the outgoing null rays from the surface diverge, while the ingoing rays converge. On a closed trapped surface, both the ingoing and outgoing null rays converge.

Future-trapped sets:

Jacobi fields: We have already encountered Jacobi fields in the derivation of the Einstein’s vacuum field equations. They are the connecting vectors of neighbouring geodesics.

Focal points: A focal point is where neighbouring geodesic intersect. Where neighbouring geodesics normal to a surface S intersect is also called a focal point.

Figure 5.6: Domains of dependence. (a) The future domains of dependence of the achronal set S. (b) The past domain of dependence of the set S. (c) The total domain of dependence of S. 498
5.1.3 The Singularity Theorem of Hawking and Penrose

It predicts that gravitational collapse, both at the Big Bang and inside black holes, brings about space-time singularities as at which the theory breaks down.

The Strong Energy Condition is the most important energy condition (Gravity is attractive)

The basic concepts needed to formulate and understand the singularity theorems will be developed as we work through the proof.

In the context of the singularity theorems, the working definition of a singularity is a kind of incompleteness of the space-time under consideration, more precisely, it is an obstruction of some sort to time-like or null geodesics from being indefinitely extendible. If the world line of a particle only exists for a finite proper time then clearly something has gone wrong but the nature of the singularity - whether it is physical reason or just a mathematical pathology is in general unclear.
Penrose Singularity Theorem: Future max. development of an initial data set containing a (future) trapped surface is incomplete. Tools: Theory of geodesics in Lorentzian (Riemann) geometry. Causal geometry. Raychaudhouri equation plays the decisive role. The full force of the Einstein equations is not used.

The singularity theorem gives very little information about the nature of the singularities, in effect they deny the existence of timelike or null geodesically complete spacetimes. The reason for the incompleteness is not predicted.

Many people believe that the resolution of the problem of singularities will come from modifications of the Einstein equations due to Quantum Gravity at the Planck scale. Explicitly demonstrated in loop quantum cosmology - a mini-superspace model which appropriately incorporates the discrete nature of quantum spacetime.

Theorem (Hawking and Penrose (1970))

Theorem 5.1.1
1. $R_{ab}K^aK^b \geq 0$ for every non-spacelike vector K.
2. \mathcal{M} contains no closed timelike curves

$$R_{ab}K^aK^b < 0 \quad (5.1)$$

(3) Every non-spacelike geodesic, with tangent vector K, contains a point at which

$$K_{[a}R_{b]cd}K^cK^d \neq 0. \quad (5.2)$$

(4) There exists at least one of the following:

(i) a compact achronal set without edge,
(ii) a closed trapped surface,
(iii) the null geodesics from some point are eventually focussed, or
the null geodesics from some closed 2-surface are all converging.

Condition (4) (i) is satisfied for any past-directed null-cone in our universe, because of the focussing effect of the black-body radiation; while (ii) is more or less the definition of a black hole, Condition (3) is a genericity condition is true for physical space-times except for certain highly symmetrical solutions.

An alternative version of the theorem is that the following three conditions cannot hold:

Theorem 5.1.2 The following are mutually inconsistent in any space-time:

(a) There are no closed trips
(b) Every endless causal geodesic contains a pair of conjugate points
(c) There is a future (past) - trapped set S in \mathcal{M}.

In fact it will be the alternative form of the theorem we will prove. After we have done that we will explain how the other theorem follows.

5.1.4 Basic Definitions

Definition A Lorentzian manifold is time-orientable if a continuous designation of future-directed and past-directed for non-spacelike vectors can be made over the manifold.

Definition A path is a smooth map from a connected set in \mathbb{R} to \mathcal{M}.

Definition A curve is the point set image of a path. If $t \rightarrow \gamma(t)$ is a path, the curve determined by $\gamma(t)$ will be denoted γ.

Future timelike curves are identified with worldlines of material particles in \mathcal{M}.

A timelike curve is maximally extended in the past if it has no past endpoint (such a curve is also called past-inextendible). The idea behind this is that such a curve is fully extended in the past direction, and not merely a segment of some other curve. Similarly definitions hold for timelike curves extended into the future.

![Figure 5.9: A path is a connected set in \mathbb{R} to the space-time manifold \mathcal{M}.](image)

The set of future-directed causal curves with a past endpoint a and a future endpoint b will be denoted $\mathcal{C}(a, b)$.

We will require that any smooth timelike curve to contain any end points it may have. This requirement eliminates curves that fail to be timelike at an end point, and which is null there instead.

Definition A causal curve is said to be past (future)-inextendible if it has no past (future) end point in \mathcal{M}.
The fig. (5.8 (a)) is a curve in Minkowski that can be prolonged while remaining timelike and hence is a timelike curve that is not inextendable. We have extended the curve α with a past directed, timelike curve which continues indefinitely. The new curve α' is past-inextendable. The new curve α'' is future-inextendable. In fig. (5.8(d)) a point has been removed we cannot prolong this curve any further into the future and so it is future-inextendable.

The null generators of the event horizon in fig.(3.13) in the sense that the continuation of the geodesic further into the past is no longer in the event horizon.

![Figure 5.10: Examples in Minkowski spacetime. (a) The curve α is taken to contain its own past end point a and future end point b. (b) The curve α' is now future-inextendable. (c) The curve α'' is now past-inextendable. (d) The curve γ is not future-inextendable because it cannot be prolonged any further.](image)

Let us model this by the artificial example given in fig(??) where we have removed a point from Minkowski spacetime. This provides an example of how the causal future of a point p will not necessarily coincide with the closure of the chronological future of p.

![Figure 5.11: (a) A curve in Minkowski spacetime with point removed. (b) A curve is zig zag that it fails to have a well defined tangent vector at a point. (c) Here we have a timelike curve which is null at its end point.](image)

In fact this situation is more general than the above example. Say infinitesimally neighbouring null geodesics from p intersect at q. This means the point q will be conjugate to p along the null geodesic γ joining them. For points on γ beyond the conjugate point q there will be a variation of γ that gives a timelike curve from p. Thus γ cannot lie in the boundary of the future of p.

502
Figure 5.12: In flat spacetime, when a null geodesic curve joins onto a timelike curve, there exists a timelike curve between p and q.

Figure 5.13: Say there are two points p and q connected by a null curve and a point r which is connected to q by a timelike curve. A timelike curve joining to the null geodesic. (b) Continuing in this way, (c), we “peel” away a timelike curve that joins r and p.

beyond the conjugate point q. So γ will have a future endpoint as a generator of the boundary of the future of p.

What we can say is the following.

Proposition 5.1.3 For all subsets $S \subset \mathcal{M}$,

1. $\text{int } J^+(S) = I^+(S)$,
2. $J^+(S) \subset \overline{I^+(S)}$.

Proof:

Obvious.
Figure 5.14: Artificial example of how the causal future of a point p will not necessarily coincide with the closure of the chronological future of p.

Figure 5.15: The point q is conjugate to p along null geodesics, so a null geodesic γ that joins p to q will leave the boundary of the future of p at q.

\[\square \]

5.1.5 Achronal Sets

Intuitively, a neighbourhood of a point is a set containing the point where you can move that point some amount without leaving the set.

Definition If X is a topological space and $p \in X$, a neighbourhood of p is a set V, which contains an open set U containing p,

$$p \in U \subseteq V.$$

Definition A subset $S \subset \mathcal{M}$ is **achronal** provided no two of its points can be joined by a timelike curve.

Lemma 5.1.4 An achronal boundary B is an achronal set.
Proof: Let \(B = \partial I^+[S] \), for some. If two points \(x, y \in B \) satisfy \(x \ll y \), then \(y \in I^+(x) \subseteq I^+[S] \) which is open. Hence \(y \) cannot be on the boundary of \(I^+[S] \).

\[\Box \]

Lemma 5.1.5 Let \(C(\lambda) \) be a causal curve that intersects \(\hat{I}^+[S] \) at some point \(p \). In the past the \(C(\lambda) \) remains in \(\hat{I}^+[S] \cup I^+[S] \).

Proof: Consider an arbitrary point \(x \) on \(C(\lambda) \) such that \(x \gg p \) and an arbitrarily small neighbourhood of \(x \). A small deformation of the curve \(C(\lambda) \), between \(p \) and \(x \), produces a timelike curve \(D \) from some point \(q \in U(x) \). Since \(p \in \hat{I}^+[S] \), a slight deformation of \(D \), keeping it timelike, produces a curve \(E \) from \(q \) to some point in \(I^+[S] \). But as \(q \) is in some arbitrary small neighbourhood of \(x \), it must also lie in \(I^+[S] \) or else in its boundary, \(\hat{I}^+[S] \).

![Figure 5.16](image)

Lemma 5.1.6 If \(p \in \partial I^+(S) \) then \(I^+(p) \subseteq I^+(S) \), and \(I^-(p) \subseteq M/\overline{I^+(S)} \).

Note that if \(q \in I^+(p) \) then \(p \in I^-(q) \), and hence \(I^-(q) \) is a neighbourhood of \(p \). Since \(p \) is on the boundary of \(I^+(S) \), it follows that \(I^-(q) \cap I^+(S) \neq \emptyset \), and hence \(q \in I^+(S) \). The second part of the lemma can be proven similarly.

\[\Box \]

Proposition 5.1.7 Let \(B = \partial \), where \(F \) is a future set. Let \(x \in B \) and suppose there is an open set \(Q \) containing \(x \) satisfying:

(a) If \(y \in Q \cap F \), there is a point \(z \) in \(F/Q \), such that \(z \ll y \).

or equivalently

505
(b) $I^{-}(y) \cap F/Q \neq \emptyset$, for all $y \in Q \cap F$

or equivalently

(c) $F = I^{+}[F/Q]$,

then x is in the future endpoint of a null geodesic lying in B.

The proof uses the method of taking a limit of causal curves. A technical difficulty arises however in that a limit of smooth causal curves need not be smooth. This leads to the need of the notion of a C^{0} causal curve.

A C^{0} causal curve is a continuous curve that can be approximated with arbitrary precision by piecewise smooth causal curve.

Figure 5.18: .

Theorem 5.1.8 $\mathring{I}^{+}[S]$ is generated by null geodesics which have no past endpoints.

Proof: Take an arbitrary point p in $\mathring{I}^{+}[S]$. Construct an arbitrary neighbourhood $U(p)$. In $U(p) \cap I^{+}[S]$ construct a sequence of points $\{p_{n}\}$ which converges to to the point p. For each n, construct a causal curve γ_{n} extending from p_{n} to S. Let q_{n} be the intersection of γ_{n} with $\mathring{U}(p)$, the boundary of $U[p]$. Since $\mathring{U}(p)$ is a compact set, the sequence q_{n} must have a limit point, q (the proof of this fact of point set topology will be given in section 5.1.7). As there are causal
curves from points \(p_n \), arbitrarily close to \(p \) to points arbitrarily near \(q \) there must be a causal curve, \(C \), from \(p \) to \(q \).

Since \(q \) is a limit point of a sequence of points in \(\mathcal{I}^+[S] \), \(q \) either lies in \(\mathcal{I}^+[S] \) or in its boundary \(\mathcal{I}^+[S] \), or both. Suppose \(q \notin \mathcal{I}^+[S] \). Then there is a small neighbourhood \(U(q) \) is contained entirely in \(\mathcal{I}^+[S] \). Construct a causal curve from \(p \) to \(S \) by going from \(p \) to \(q \) along the causal curve \(C \), then from \(q \) along a timelike curve to some point \(r \in U(q) \), and then from \(r \) to \(S \) along a causal curve. Since this curve from \(p \) to \(S \) has a timelike segment, it reaches any desired point \(s \) in some small neighbourhood \(V(p) \). But this means that \(V(p) \subset \mathcal{I}^+[S] \), hence that \(p \notin \mathcal{I}^+[S] \). This contradicts the definition of \(p \), and so it must be that \(q \in \mathcal{I}^+[S] \).

Proposition 5.1.9 Once a a generator, being followed into the future, enters \(\mathcal{I}^+[S] \), it can never leave \(\mathcal{I}^+[S] \).
Proof: Follow the generator \mathcal{C} from p to p' and further. This curve can never leave $I^+[S]$.

\[
\square
\]

5.1.6 Strong Causality

The **strong causality** condition holds on \mathcal{M} if there are no closed or “almost-closed” timelike or null curves through any point of \mathcal{M}. If μ is any timelike curve in a spacetime that obeys the strong causality condition and x is any point not on μ, then there must be some neighborhood \mathcal{N} of x that does not intersect μ. (Otherwise, μ would accumulate at x, and thereby give an almost-closed timelike curve.)

Globally hyperbolic \rightarrow causally simple \rightarrow stably causal \rightarrow strongly \rightarrow distinguishing \rightarrow causal \rightarrow chronological.

Chronology: There are no closed timelike curves, collection of points $\pi \mathcal{M}$, such that $p_1 < p_2 \ldots p_n < p_1$.

Causality: There are no closed causal curves, collection of points $\{p_i\} \mathcal{M}$, s.t. $p_1 < p_2 < \ldots < p_n < p_1$.

Future / Past Distinguishing condition: Any two points with the same chronological future (past) coincide.

Strong Causality Condition: There are no almost closed timelike curves.

Stable Causality Condition: (\mathcal{M},g) is not ”on the verge” of having a bad causal structure. (There is a neighbourhood of g in the C^k open topology ...)

Definition: There exists a continuous nonzero tvf σ such that the metric $g'_{ab} := g_{ab}$

the chronology and causality conditions a slightly stronger condition when the chronology condition is almost violated. Since an arbitrarily small perturbation of the metric will result closed timelike curves, such space-times also seems physically unreasonable. Techniquile reasons for considering strong causality. It will be of central importance in what follows.

Strong causality is violated at a point p if there are timelike curves starting at x which come arbitrarily close to p after leaving a given convex neighbourhood.

We give a more precise definition of strong causality at a point.

A collection of open sets in \mathcal{M} forms a neighbourhood basis of some point $x \in \mathcal{M}$ if every open set containing x has in it an open set from the collection with each open set in the collection containing x.

Definition (Strongly Causal) A space-time \mathcal{M} is said to be **strongly causal** at $a \in \mathcal{M}$ if and only if a has a neighbourhood base $\{U_\alpha : \alpha \in \Lambda\}$ with the property that no U_α is intersected by a trip that then leaves U_α and then intersects U_α again. A space-time is strongly causal if it is strongly causal at each point.
Figure 5.21: The lines ℓ_1 and ℓ_2 have been removed. This is a space-time which is causal but fails to be strongly causal.

![Figure 5.21](image)

Figure 5.22: (a) . (b) Suitable causal basis.

(a) ![Figure 5.22a](image) (b) ![Figure 5.22b](image)

In \mathcal{M}^2 (and elsewhere) one may construct various types of neighbourhoods at a point a. A neighbourhood base at a constructed with sets similar to either of the first two in the figure is not a suitable "causality base". \mathcal{M}^2 is strongly causal because there exists at each point a a neighbourhood base consisting of sets similar to either the third or the fourth.

Definition (Causally Convex) An open set \mathcal{U} in a space-time \mathcal{M} is said to be *causally convex* if no causal curve leaves \mathcal{U} and then reenters \mathcal{U}.

Definition (Strongly Causal) A space-time is *strongly causal* at a point $p \in \mathcal{M}$ if every open neighbourhood of p contains a causally convex neighbourhood of p.

Definition Let N be a simple region containing a. The **local future** (past) of a point a, denoted $I^+_L(a)$ ($I^-_L(a)$), is

Definition Let N be a simple region containing $I^-_L(x) \cap I^+_L(y)$ neighbourhood base

$\{z : p \ll r \ll q, \text{ where the trip lies in } N\}$

In Minkowski space-time the points x and y
Figure 5.23: Minkowski space-time: b is joined to a by a null geodesic we consider $x \in I^+(a)$ and $y \in I^-(b)$. In the first in case (a) $y \ll x$. In case (b) $y < x$ but $y \not\ll x$. In case (c) x and y are not causally related, in particular $y \not\ll x$.

Figure 5.24: b is joined to a by a null geodesic we consider $x \in I^+(a)$ and $y \in I^-(b)$. In the first case (a) $y \ll x$ there are no closed timelike curves. In case (c) For some x and y.

Proposition 5.1.10 Let $a \in \mathcal{M}$. Strong causality fails at a if there is a point $b > a$, $b \neq a$, such that for all $x \in I^+(a)$ and all $y \in I^-(b)$, $y \ll x$.

Proof:

Suppose a and b exist satisfying the hypotheses. Separate a and b by disjoint neighbourhoods of a contained in $V(a)$ and $W(b)$. Let $U(a)$ be any neighbourhood of a contained in $V(a)$. Choose $x^1 \in I^-(a) \cap U(a)$ and $x \in I^+(a) \cap U(a)$ see fig.5.1.6 (a).

Since $x^1 \ll a$, and $a < b$, $x^1 \ll b$. Thus there is a trip from x^1 to b which must leave $U(a)$, see fig(5.1.6a). Choose y on this trip inside $W(b)$. Then $y \ll x$ by hypothesis, and the trip $[x^1yx]$ intersects $U(a)$ twice, fig.5.1.6 (b). Thus no nbd. of a contained in $V(a)$ can satisfy the strong causality condition and thus no nbd. base at a can satisfy it. So strong causality fails at a.

\[\Box\]

Now we consider the converse. We first need to introduce the following concept. Let N be a simple region containing a. Take any $x >> a$ such that x and a are joined by a unique timelike
Proposition 5.1.11 Let $a \in \mathcal{M}$. Strong causality fails at a only if there is a point $b > a$, $b \neq a$, such that for all $x \in I^+(a)$ and all $y \in I^-(b)$, $y << x$.

Proof:

If y is in the local past of a, then

$$ I_L^-(x) \cap I_L^+(x) = \{ z : y << z << x, \text{ where the trip lies in } N \} $$

is clearly an open neighbourhood of a. If a trip intersects this neighbourhood in a disconnected set, it clearly must leave and reenter N in order to do so.

If strong causality fails at a point a there must be a nested sequence of these neighbourhoods at a, $\{ U_i : i = 1, 2, 3, \ldots \}$ $U_i \supset U_{i+1}$; $\cap_i \{ U_i \} = \{ a \}$ with the property that each U_i contains the past end point of a trip γ_i which leaves N and then comes back to enter U_i.

$$ U_i : i = 1, 2, 3, \ldots ; \quad U_I \supset U_{i+1} ; \quad \cap_i \{ U_i \} = a. \quad (5.3) $$

Being the limit of timelike curves $[c_i,d_i]$ cannot be spacelike, but can be null or timelike??

$y << b_i$ as b_i is on γ_i $b_i << x$, hence $y << x$.

$$ x << a_i \ll b_i \ll c_i \ll y \quad \text{for } i \text{ large enough} \quad (5.4) $$
Remark If, given the conditions of the 5.1.10, \(b \) is found to satisfy \(a \ll b \), then for any \(y \in I^-(b) \cap I^+(a) \), we have \(y \ll y \); i.e. there are closed trips in \(\mathcal{M} \).

Alexandroff Topology

A topological space is **Hausdorff** if any two given points can be isolated from each other by disjoint sets. Or more presicely, a topological space \(X \) is Hausdorff if any two given points \(p_1, p_2 \in X \), there are two open sets \(U_1 \) and \(U_2 \) with \(p_1 \in U_1 \) and \(p_2 \in U_1 \) but with the intersection of \(U_1 \) and \(U_2 \) empty.

The finer the topology, the more open sets it has.

Theorem 5.1.12 The following three conditions on a spacetime \(\mathcal{M} \) are equivalent:
Proof: If the alexanddorff topology is weaker than the manifold topology, there is an M-open set $U(y)$ such that any A-nbd. of y gets outside of U, (for example in fig5.1.6)). Since M is regular we may assume this holds for the \overline{U} as well. Now let $V(y)$ be an arbitrary M-open neighbourhodd of y. Let $b \in I^+(y)$, $a \in I^-(y)$. By hypoth, $\{I^-(b) \cap I^+(a)\}/\overline{U} \neq \emptyset$. Choose z in this set. Then $z \notin V(y)$, but $a \gg z \gg b$, and $V(y)$ disconnects the trip $[azb]$. Since $V(y)$ is arbitrary, strong causality fails at y.

Proposition 5.1.13 For each $a \in M$ define $Q_a \{x \in M : x$ lies on a closed trip through $a\}$. Then Q_a is open, for every $a \in M$; and either $Q_a \cap Q_b$, for all $a, b \in M$.

513
Figure 5.30: \(a \in I^-(y) \cap V(y) \) and \(b \in I^+(y) \cap V(y) \). In the first case (a) \(y \ll x \) timelike curves. (b) Points in the open set of \(b \) are also in \(I^+(x) \cap I^-(y) \).

Proof:

Proposition 5.1.14 If strong causality fails at \(a \in \mathcal{M} \), then one (at least) of the following is true:

1. There are closed timelike curves through \(a \).
2. There is a future endless null geodesic through \(a \) along which strong causality fails; and there are closed tris near \(a \).
3. Time reverse of (2).
4. There is an endless null geodesic through \(a \) along which strong causality fails.

In a spacetime \(\mathcal{M} \), let \(G \) be defined as the set of points where strong causality holds, i.e. \(G \subset \mathcal{M} \)

\[
G = \{ x : \mathcal{M} \text{ is strongly causal at } x \}.
\]

Proposition 5.1.15 Let \(a \in \mathcal{M} \). Strong causality fails at \(a \) \(\iff \) there is a point \(b > a, b \neq a \), such that for all \(x \in I^+(a) \) and all \(y \in I^-(b), y \ll x \).

Definition The future domain of dependence, \(D^+(\Sigma) \), is the set of points \(p \) in \(\mathcal{M} \) for which every past-inextendable causal curve through \(p \) intersects \(\Sigma \), fig(5.1.6).

We note that Penrose [?] and Geroch [?] use timelike curves to define the domain of dependence, rather than non-spacelike curves used above, which agrees with Hawking and Ellis [7].

The physical significance of the future (past) domain of development \(D^+(\Sigma) \) is that it is the region in the future (past) of \(\Sigma \) that can be predicted from knowledge of the data on \(\Sigma \).
Figure 5.31: (a) There is an endless null geodesic along which strong causality is violated. (b) Strong causality is violated everywhere in R.

Figure 5.32: $F := I^+(Q)$ and $P := I^-(Q)$. $Q = F \cap P$, $\partial Q = F\partial + \partial P$.

Definition Let S be a closed achronal set. The edge of S is defined as a set of points $x \in S$ such that every neighbourhood $U(x)$ of x contains $y \in I^+(S)$ and $z \in I^-(S)$ and a timelike curve γ from z to y which does not meet S.

An example of a closed achronal surface without edge is given in fig (a).

Proposition 5.1.16 Let $S \subset \mathcal{M}$ be achronal and closed. Then:

1. $H^+(S)$ is achronal and closed.
2. $D^+(S)$ is closed.
3. $x \in D^+(S) \Rightarrow \{I^-(x) \cap I^+[s]\} \subset D^+(s)$.

515
Figure 5.33: The lines ℓ_1, ℓ_2 and ℓ_3 have been removed.

Figure 5.34: The future domain of dependence, $D^+(\Sigma)$, of Σ. p is in $D^+(\Sigma)$, q isn’t because there are past-inextendable causal curve through q that don’t intersect Σ, e.g. the curve γ

(4) $\partial D^+(S) = H^+(S) \cup S$.
(5) $I^+[H^+(S)] = I^+[s]/D^+(S)$.

Proof:

Definition Let $S \subset M$ be achronal and closed. The **edge of** S is defined to be

$$\{ x \in S : \text{for all } y, z, \text{ there is a trip}[zy] \text{ not meeting } S \}. \quad (5.5)$$

Proposition 5.1.17 (a) $x \in D^+(S)$ implies $I^-(x) \cap \text{edge}(S) = \emptyset$

(b) $\text{edge}(S) = \text{edge}(H^+(S))$.

Proposition 5.1.18 Let $x \in H^+(S)/\text{edge}(S)$. Then there is a null geodesic on $H^+(S)$ with future endpoint x. 516
Figure 5.35: The future domain of dependence, $D^+(\Sigma)$, of a closed Σ in Minkowski spacetime.

Figure 5.36: Domains of dependence.

Definition A non-empty, closed achronal set S is said to be *future-trapped* if $E^+[S]$ is compact. Past-trapped sets are defined analogously.

If we can associate with the topology some countable set of open sets and use the desirable properties of countability to learn something about the space. In conjunction with the requirement of strong causality, we establish the following result:

Proposition 5.1.19 For $x \in \text{int } D^+(S)$ the set $J^-(x) \cap J^+[S]$ is compact.

Proof: Assume $K := J^-(x) \cap J^+[S]$ is not compact.

As we assume K to be non-compact, it has no cover with a finite subcover. There is an open cover $\{U_i : i = 1, 2, 3\ldots\}$ which is countable, locally finite and whose elements are simple regions.
5.1.7 The Space of Causal Curves

In a spacetime \mathcal{M}, let $G \subset \mathcal{M}$ be defined as the set of all points in \mathcal{M} which are strong causality holds,

$$G := \{ x : \mathcal{M} \text{ is strongly causal} \}$$ \hspace{1cm} (5.6)

The set where strong causality fails being \mathcal{M}/G.

Proposition 5.1.20 G is open.

Proof We prove this by showing that \mathcal{M}/G is closed. First note that a set is closed in \mathcal{M} if and only if this set contains its own boundary. If we show that the limit point of every convergent series in \mathcal{M}/G also belongs to \mathcal{M}/G, then by implication, every point in the boundary of \mathcal{M}/G also belongs to \mathcal{M}/G. To this end, consider any series $\{x_i\} \in \mathcal{M}/G$ which converges to some point $x \in \mathcal{M}$. Take a simple region containing x_i, find the point b_i such that for all

$$a \in I^-(b_i) \text{ and } b \in I^+(x_i) \quad a \ll b.$$ \hspace{1cm} (5.7)
Take the intersection of the geodesic $[x, b_i]$ with the (compact) boundary of the simple region. These intersections have a cluster point y. Take two disjoint neighbourhoods of x and y. It is easy to construct a trip leaving this neighbourhood of x, entering the neighbourhood of y and then reentering the neighbourhood of x, showing that strong causality fails at x. Thus $x \in \mathcal{M}/G$.

The length of a smooth curve is

$$L(\alpha) = \int_{p}^{q} \sqrt{g_{ab}(\alpha(t)) \frac{d\alpha^{a}(t)}{dt} \frac{d\alpha^{b}(t)}{dt}} \, dt$$

(5.8)

The length of a piecewise smooth curve is defined by adding the lengths of its smooth segments.

It is assumed that A and B are closed achronal sets contained in K, a compact subset of G. We denote by $\mathcal{C}_{K}(A, B)$ the set of causal curves from A to B lying in K, and by $\mathcal{T}_{K}(A, B)$ the set of causal trips from A to B lying in K.

Lemma 5.1.21 Any compact subspace C of a Hausdorff topological space X is closed in X.

519
Figure 5.41: We can only get convergence to a cluster point in K if the space wasn’t locally finite.

Figure 5.42: $K = J^+(S) \cap J^-(p)$ K is compact.

Proof: Let C be a compact subspace of a Hausdorff topological space X and let $a \in X - C$. We shall prove that there exist an open set U_a such that $a \in U_a \subset X - C$. Then $X - C = \cup_{a \in X - C} U_a$, so $X - C$ is open and hence C is closed.

Since X is Hausdorff, we can choose open subsets U_x and $V(x)$ of X such that $a \in U_x$, $x \in V(x)$, and U_x and $V(x)$ are disjoint. Choosing such subsets U_x and $V(x)$ for every point $x \in C$, we see that the sets $V(x)$ form an open cover of C. Since we assume C is a compact topological space, it follows that C is the union of the open sets V_{x_1}, \ldots, V_{x_r} for some finite collection of points $x_1, \ldots, x_r \in C$. Let $U_a = \cap_{i=1}^r U_{x_i}$. Then U_a, as a finite intersection of open sets, is open. Also, $a \in U_a$ since $a \in U_{x_i}$ for every $i = 1, 2, \ldots, r$. Finally, if $b \in U_a$ then for any $i = 1, 2, \ldots, r$, $b \in U_{x_i}$ and hence $b \not\in V(x_i)$, so $b \not\in C$, since $C \subset \cup_{i=1}^r V(x_i)$. Thus $U_a \subset X - C$.

□
\[D^+(S) \]

Figure 5.43: \(K = J^+(S) \cap J^-(p) \) \(K \) is compact.

Figure 5.44: \(G \) is an open set.

\[M, \text{ as a topological space, is metrizable. Choose an arbitrary metric } d \text{ compatible with the manifold topology. Then in } G, \ d \text{ is compatible with the Alexandroff topology.} \]

Recall that for a set \(E \) and a point \(p \),

\[d(p, E) := \inf \{d(p, y) : y \in E\} \tag{5.9} \]

For a curve \(\gamma \) and some \(\epsilon > 0 \) we define the \(\epsilon \)–band \(V_\epsilon(\gamma) \) about \(\gamma \) as

\[V_\epsilon(\gamma) := \{y \in M : d(y, \gamma) < \epsilon\}. \tag{5.10} \]

For \(\gamma \in C_K(A, B) \) we define a metric on the space \(C_K(A, B) \) as the radius of the smallest band

521
which when put around either curve encloses the other as well,

\[\rho(\gamma_1,\gamma_2) := \inf \{ \epsilon : V_\epsilon(\gamma_1) \supset \gamma_2 \text{ and } V_\epsilon(\gamma_2) \supset \gamma_1 \} \]

(5.11)

\(\rho \) is the restriction to \(C_K(A,B) \) of the Hausdorff metric. \(\rho \) is a pseudo-metric on the power set of \(\mathcal{M} \) and a metric on the closed subsets of \(\mathcal{M} \). The elements of \(C_K(A,B) \) are compact and thus closed).

The causal curves form the complete set of pointwise limits of the causal trips.

Proposition 5.1.22 \(T(A,B) \) is dense in \(C(A,B) \).

Proof: Let \(\gamma \in C(A,B) \).

![Figure 5.45: approximate a causal curve by a causal trip.](image)

\[q \]

\[p \]

Mathematical preliminaries

Recall that a Cauchy sequence is not necessarily convergent. For example, consider the subspace \(X = (0,1] \) of the real line. the sequence defined by \(x_n = 1/n \) is easily seen to be a Cauchy sequence in this space, but it is not convergent, since the point 0 is not a point of the space.

A metric space is sequentially compact if every sequence has a convergent subsequence.

Proposition 5.1.23 Let \((X,d) \) be a metric space. If a set \(C \subseteq X \) is compact then it is sequentially compact.
Proof: Let E denote the set of members of a sequence $\{x_n\}$ in C. First say E is finite. Then at least one point, say x, of E must be repeated infinitely often in the sequence $\{x_n\}$, and its occurrences form a subsequence converging to x, which is a point in C.

Now suppose E is infinite. Suppose E has no limit point in C. Then for each $x \in C$, there exists $\epsilon(x)$ such that $S_{\epsilon(x)}(x)$ contains no point of E other than x. That is, $S_{\epsilon(x)}(x) \cap E = \emptyset$ or $\{x\}$.

Now by compactness of C, the cover $\{S_{\epsilon(x)}(x) : x \in C\}$ has a finite subcover. But the union of any finite subcollection of the $S_{\epsilon(x)}(x)$ doesn’t cover E, let alone C. This contradiction proves that E must have a limit point in C.

A space is totally bounded if the cover

$$\{S_\epsilon(x) : x \in X\}$$

has a finite subcover for any $\epsilon > 0$.

Roughly, a metric space is complete if every series in it which tries to converge is successful, in the sense that it finds a point in the space to converge to.

Theorem 5.1.24 Let (X,d) be a metric space. A set $C \subseteq X$ is sequentially compact if and only if it is both complete and totally bounded.

Proof: Let C be sequentially compact. Every sequence has a convergent subsequence. Since the sequence is Cauchy, it follows it converges. We prove total boundedness by contradiction. Suppose there is some $\epsilon > 0$ such that C is not totally bounded for ϵ. It is then possible to construct a sequence such that no term in the sequence is within ϵ of any other term in the sequence. This sequence has no Cauchy subsequences, for if it did there would be a subsequence who’s terms would get close to each other. Hence there are no convergent subsequences, and hence C is not sequentially compact. We construct the desired sequence as follows: take any point p_1 in C. Choose p_2 to be any point not in $S_\epsilon(p_1)$. This is possible since C is not totally bounded. Choose p_3 to be any point not in $S_\epsilon(p_1) \cup S_\epsilon(p_2)$. Again this is possible since C is not totally bounded. Continuing in this way one constructs the desired sequence.

Now, let C be complete and totally bounded. Let E denote the set of members of a sequence $\{x_n\}$ in C. If E is finite it has a trivial convergent subsequence. Suppose, then, this is not the case. As C is totally bounded we can form a finite cover with a set of balls of radius 1. One of these balls, call it S_1 must contain an infinite subset of $\{x_1\}$. Take the first term in the subsequence, x_{i_1}, to be any term in the sequence $\{x_i\}$ that lies in S_1. Now form a new cover of C using a finite set of balls of radius $1/2$. One of these balls, label it S_2, must contain an infinite subset of $S_1 \cap E$. Take the second term in the subsequence, x_{i_2}, to be any term in the sequence $\{x_i\}$ that lies in $S_1 \cap S_2$ and for $i_2 > i_1$. Continuing in this way, one constructs a Cauchy subsequence $\{x_{i_k}\}$. Since C is complete, $\{x_{i_k}\}$ converges to a point in C. Thus C is sequentially compact.

\[\Box\]
Definition Given an open cover \(U \) of a metric space \(X \), a fixed real number \(\epsilon > 0 \) is called a Lebesgue number for \(U \) if for any \(x \in X \), there exists a set \(U(x) \in U \) such that \(S_\epsilon(x) \subset U(x) \).

Theorem 5.1.25 Any sequentially compact metric space \((X,d)\) is compact.

Proof: First we show there exists a Lebesgue number for any open cover of a sequentially compact metric space \(X \). Suppose \(U \) be an open cover for which no Lebesgue number exists. Then for any integer \(n \), there exists some point of \(X \), say \(x_n \), such that \(S_{1/n}(x_n) \) is not contained in some \(U \) of \(U \). Consider a sequence of such points \(\{x_n\} \). By sequentially compactness, \(\{x_n\} \) has a subsequence \(\{x_{n_k}\} \) converging to some point \(x \in X \). Since \(U \) covers \(X \), \(x \in U_0 \) for some \(U_0 \in U \). Since \(U_0 \) is open, \(S_{2/m}(x) \subset U_0 \) for some integer \(m \). Now \(S_{1/m}(x) \) contains \(x_{n_k} \) for all \(k \geq M \). Choose \(k \geq M \) so that \(n_k \geq m \), and write \(s = n_k \). Take \(y \) to be any point in \(S_{1/s}(x_s) \), then by \(d(x,y) < 1/m + 1/s \leq 2/m \) we have \(S_{1/s}(x_s) \subset S_{2/m}(x) \), and hence \(S_{1/s}(x_s) \subset U_0 \). This contradiction shows that there exists a Lebesgue number for \(U \).

Now, let \(U \) be an arbitrary open cover of a sequentially compact metric space \(X \). By the preceding lemma there exists Lebesgue number \(\epsilon \) for \(U \). As a sequentially compact metric space is totally bounded, there exists a finite cover for this Lebesgue number \(\{S_\epsilon(x_i) : \{x_1, x_2, \ldots, x_n\}\} \) for \(X \). Then each \(S_\epsilon(x_i) \) is contained in some set, say \(U_i \), in \(U \) by definition of Lebesgue number. Since \(X \subset \cap_{i=1}^n S_\epsilon(x_i) \subset \cap_{i=1}^n U_i \), we have a finite subcover \(\{U_1, U_2, \ldots, U_n\} \) of \(U \) for \(X \).

□

Proposition 5.1.26 Any closed subspace \(C \) of a compact metric space \(T \) is compact.

Proof: Let \(U \) be any cover of \(C \) by sets open in \(T \). Since \(C \) is closed, \(T - C \) is open. \(T - C \) together with the collection \(U \) forms an open cover of \(T \). By the compactness of \(T \), there is a finite subcover, say \(\{U_1, U_2, \ldots, U_r\} \), one these being the set \(T - C \). The other \(U \)'s provide a finite subcover of \(U \) for \(C \).

□

We now move onto proving \(C_K(A,B) \) is a compact metric space.

Proposition 5.1.27 If \(K \) is compact and contained in \(G \), \(C_K(A,B) \) is totally bounded.

Proof: We wish to show the cover \(\{S_\epsilon(\gamma_i) : \gamma_i \in C_K(A,B)\} \) has a finite subcover for any \(\epsilon > 0 \). Let \(\epsilon < 0 \) be given. Since \(K \) is compact it is totally bounded and may therefore be covered by finitely many Alexandroff neighbourhoods of diameter less than \(\epsilon/2 \), say \(\{A_1, A_2, \ldots, A_N\} \).
Consider the open sets \(\{B_i\} \) formed by chains of \(A_i \)'s, \(A_{j_1} \cup \cdots \cup A_{j_n} \), such that they connect the sets \(A \) and \(B \), i.e.,

\[
A \cap A_{j_1} \neq \emptyset, \quad A_{j_n} \cap B \neq \emptyset, \quad A_{j_k} \cap A_{j_{k+1}} \neq \emptyset
\]

(5.13)

and

\[
I^+[A_j] \cap A_{j+2} \neq \emptyset.
\]

(5.14)

The condition \(A_{j_k} \cap A_{j_{k+1}} \neq \emptyset \) ensures there exists causal curves from one neighbourhood to the next, the condition \(I^+[A_j] \cap A_{j+2} \neq \emptyset \) guarantees the chain \(B_i \) contains causal curves from \(A \) to \(B \), by excluding cases such as in fig (5.1.7).

![Causal Curves Diagram](image)

Figure 5.46: Imposition of the condition \(I^+[A_j] \cap A_{j+2} \neq \emptyset \) avoids cases such as the above.

As there are a finite number of possible unions of the finite collection of sets \(A_i \)'s, there are finitely many \(B_j \)'s. Now, set

\[
B'_i := \{ \gamma \in \mathcal{C}_K(A, B) : \gamma \subset B_i \}.
\]

(5.15)

By construction, we have \(B'_i \neq \emptyset \) for each \(i \); since every \(\gamma \) in \(\mathcal{C}_K(A, B) \) is contained in one of the \(B_i \)'s we have \(\cup\{B'_i\} = \mathcal{C}_K(A, B) \); \(\gamma \in B'_i \) implies \(B'_i \subset S_\epsilon(\gamma) \).

\[
\square
\]

Proposition 5.1.28 \(\mathcal{C}_K(A, B) \) **is complete.**
Proof: Let \(\{ \gamma_i \} \subseteq C_K(A,B) \) be a Cauchy sequence. Cover \(K \) by finitely many Alexandroff neighbourhoods each of which is contained in a simple region whose closure lies in \(G \). Let \(\{ x_i \} \) be a sequence on \(A \) formed by intersections of the \(\gamma_i \). As \(\{ x_i \} \) is Cauchy and \(A \) is compact (being a closed subset of the compact set \(K \)) \(x_i \) converges to a point \(x_0 \in A \). Let \(A_1 \) be an Alexandroff neighbourhood in the cover which contains \(x_0 \). Introduce Minkowskian coordinates in \(A_1 \) centered at \(x_0 \). Since \(x_0 \in A_1^0 \) there is some interval \([0,t_1)\) such that for each \(t \) satisfying \(0 \leq t < t_1 \), the compact 3-surface \(\{ t = \text{constant} \} \cap A_1 \) is intersected by infinitely many \(\gamma_i \) in points \(x_i(t) \) in \(A_1 \). For each such \(t \), \(\{ x_i(t) \} \) is a Cauchy sequence in the 3-surface and thus converges to a limit which we denote \(x_0(t) \). It is clear that \(0 < t' < t'' < t_1 \) implies \(x_0(t') < x_0(t'') \), and that \(x_0(t) \) is continuous.

\[\gamma_2 \beta_1 \]
\[x_0(t) \]
\[t \]

Figure 5.47: The geodesic \(\lambda \).

........
........

Repeat the process, taking the Minkowskian coordinates in \(A_2 \) to have the value \((t_1,0,0,0)\) at \(x_0(t_1) \). The process is is finite since the curve \(x_0(t) \) so constructed is a causal curve and cannot re-enter any Alexandroff neighbourhood it has left. Therefore \(x_0(t) \) must strike \(B \), since \(B \) is closed.

\[\square \]

Theorem 5.1.29 \(C_K(A,B) \) is a compact metric space.

Proof: \(C_K(A,B) \) is totally bounded and complete and hence compact.

\[\square \]

Corollary 5.1.30 Let \(S \) be closed, achronal, and strongly causal. Let \(x \in \text{int}D(S) \). Then \(C_K(A,B) \) is compact.
Proof: \(\mathcal{C}_K(x, S) \subset K \equiv J^-(x) \cap J^+[S] \), which is compact and contained in a strongly causal region.

\[\square \]

Corollary 5.1.31 Let \(S \) be closed, achronal, and strongly causal. Let \(a, b \in \text{int}D(S) \). Then \(\mathcal{C}_K(A, B) \) is compact

\[\square \]

Figure 5.48: The sequence is a Cauchy sequence in \(\mathcal{C}(a, b) \), but it is not convergent, since there is a point missing.

Definition A spacetime \(\mathcal{M} \) is said to be globally hyperbolic if and only if \(\mathcal{M} \) is strongly causal and \(\mathcal{C}(a, b) \) is compact, for all \(a, b \in \mathcal{M} \).

Definition A Cauchy hypersurface for \(\mathcal{M} \) is a closed achronal set \(S \) for which \(D(S) = \mathcal{M} \).

Proposition 5.1.32 \(\mathcal{M} \) has a Cauchy hypersurface implies the spacetime \(\mathcal{M} \) is globally hyperbolic.

Proof: Corollary 5.1.31.

\[\square \]

Definition A partial Cauchy surface \(S \) is defined as an acausal set without edge.

A partial Cauchy surface is called a Cauchy surface or a global Cauchy surface if \(D(S) = \mathcal{M} \).

Let \(S \) be a partial Cauchy surface. Then let \(\mathcal{N} = D^+(S) \cup D^-(S) \). Even though \(\mathcal{M} \) may not be globally hyperbolic and \(S \) is not a Cauchy surface, the region \(\text{int}D^+(S) \) or \(\text{int}D^-(S) \) is globally hyperbolic in its own right as the surface \(S \) serves as a Cauchy surface for the manifold \(\text{int}\mathcal{N} \).
An important property of globally hyperbolic spacetimes, or any globally hyperbolic subset of \mathcal{M}, which is relevant for the singularity theorems is the existence of maximum length non-spacelike geodesics between pairs of causally related points. This we will see in the next section.

If one removes a point from Minkowski spacetime, the resulting spacetime \mathcal{M} admits no Cauchy surface and is therefore not globally hyperbolic.

![Figure 5.49: Minkowski space time with a point removed is not globally hyperbolic. The point q is not in $D^+(S)$ as there are non-spacelike curves like λ which do not meet S in the past.](image)

The requirement that a spacetime posses a Cauchy hypersurface is very strong as we will see, such spacetimes have very regular global behaviour and all the pathological features in previous sections are excluded. It has been shown that a globally hyperbolic spacetime is homeomorphic to $\mathbb{R} \times S$ where S is a three-dimensional submanifold and for each $t \in \mathbb{R}$, the spacelike hypersurface S_t of constant time is a Cauchy surface for the spacetime. A globally hyperbolic spacetime has a unique topological structure and admits no topology change.

There are spacetimes homeomorphic to $\mathbb{R} \times S$ which do not have Cauchy hypersurfaces.

In quantum gravity, however, different kinds of topologies and, in particular, topology changes are conceivable. Perhaps it is possible to construct the quantum theory of the gravitational field based on the classical assumption that $\mathcal{M} = \mathbb{R} \times \sigma$ and then lift this restriction in the quantum theory.

5.1.8 Conjugate Points

Mathematical preliminaries

Proposition 5.1.33 If $f : \mathcal{T}_1 \to \mathcal{T}_2$ is a continuous map of topological spaces and \mathcal{T}_1 is compact then $f(\mathcal{T}_1)$ is compact.
Proof: Suppose that \mathcal{U} is an open cover of $f(T_1)$ by sets open in T_2. By continuity of f, $f^{-1}(U)$ is open in T_1 for every U in \mathcal{U}. By compactness of T_1, there is a finite subcover $\{f^{-1}(U_1), f^{-1}(U_2), \ldots, f^{-1}(U_r)\}$, and it is easily seen that $\{U_1, U_2, \ldots, U_r\}$ is then a finite subcover of \mathcal{U} for $f(T_1)$.

\[\square\]

Corollary 5.1.34 Compactness is a topological property: if T and T_2 are homeomorphic then T_1 is compact if and only if T_2 is compact.

Corollary 5.1.35 Any continuous map from a compact space to a metric space M is bounded.

Proof: We show that any compact subset C of a metric space is bounded, the corollary then follows from proposition 5.1.33. Let x_0 be any point of M. Then $C \subset \bigcup_{n=1}^{\infty} B_n(x_0)$, since for any $x \in C$, $d(x, x_0) < n$ for some integer n. Thus the collection $\{B_n(x_0) : n \in \mathbb{N}\}$ form an open cover for C, and since C is compact, there is a finite subcover, say $\{B_{n_1}, B_{n_2}, \ldots, B_{n_r}\}$. Let $n = \text{Max}\{n_1, n_2, \ldots, n_r\}$. Then $C \subset \bigcup_{i=1}^{r} B_{n_i}(x_0) = B_n(x_0)$.

\[\square\]

Definition If f is a real-valued function on a metric space E and $p_0 \in E$ we say that f attains a maximum at p_0 if $f(p_0) \geq f(p)$ for all $p \in E$, and that f attains a minimum at p_0 if $f(p_0) \leq f(p)$ for all $p \in E$.

Corollary 5.1.36 Any continuous real-valued function on a nonempty compact metric space attains a maximum at some point, and also attains a minimum at some point.

![Figure 5.50: (a) An upper semi-continuous function. (b) A lower semi-continuous function.](image)
Definition A real-valued function f defined on a topological space T is said to be **upper semicontinuous at a point** $x_0 \in T$ if, given any $\epsilon > 0$, there exists a neighbourhood of x_0 in which $f(x) < f(x_0) + \epsilon$. Equivalently, this can be expressed as

$$\lim \sup_{x \to x_0} f(x) \leq f(x_0).$$

The function f is called **upper semicontinuous** if it is upper semicontinuous at every point of its domain. Similarly, f is said to be lower semicontinuous at x_0 if, given any $\epsilon > 0$, there exists a neighbourhood of x_0 in which $f(x) > f(x_0) - \epsilon$.

Lemma 5.1.37 Any compact subspace C of a Hausdorff topological space X is closed in X.

Proof: Let C be a compact subspace of a Hausdorff topological space X and let $a \in X - C$. We shall prove that there exist an open set U_a such that $a \in U_a \subset X - C$. Then $X - C = \cup_{a \in X - C} U_a$, so $X - C$ is open and hence C is closed.

Since X is Hausdorff, we can choose open subsets U_x and $V(x)$ of X such that $a \in U_x$, $x \in V(x)$, and U_x and $V(x)$ are disjoint. Choosing such subsets U_x and $V(x)$ for every point $x \in C$, we see that the sets $V(x)$ form an open cover of C. Since we assume C is a compact topological space, it follows that C is the union of the open sets V_{x_1}, \ldots, V_{x_r} for some finite collection of points $x_1, \ldots, x_r \in C$. Let $U_a = \cap_{i=1}^r U_{x_i}$. Then U_a, as a finite intersection of open sets, is open. Also, $a \in U_a$ since $a \in U_{x_i}$ for every $i = 1, 2, \ldots, r$. Finally, if $b \in U_a$ then for any $i = 1, 2, \ldots, r$, $b \in U_{x_i}$ and hence $b \notin V(x_i)$, so $b \notin C$, since $C \subset \cup_{i=1}^r V(x_i)$. Thus $U_a \subset X - C$.

\[
\square
\]

Theorem 5.1.38 Let $f : M \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous function on the Hausdorff space M. Suppose that there is a real number r such that

a) $[f \leq r] = \{x \in M : f(x) \leq r\} \neq \emptyset$ and

b) $[f \leq r]$ is sequentially compact.

Then there is a minimizing point x_0 for f on M:

$$f(x_0) = \inf f(x).$$

Proof: We begin by showing indirectly that f is lower bounded. If f is not bounded from below there is a sequence $\{x_n\}_{n \in \mathbb{N}}$ such that $f(x_n) < -n$ for all $n \in \mathbb{N}$. For sufficiently large n the elements of the sequence belong to the set $[f \leq r]$, hence there is a subsequence $y_j = x_{n(j)}$ which converges to a point $y \in M$. Since f is lower semicontinuous we know $f(y) \leq \lim \inf_{j \to \infty} f(y_j)$, a contradiction since $f(y_j) < -n(j) \to -\infty$. We conclude that f bounded from below and thus has a finite infimum.
\[-\infty < I = I(f, M) = \inf_{x \in M} f(x) \leq r. \]

Therefore there is a minimizing sequence \(\{ x_n \}_{n \in N} \) whose elements belong to \([f \leq r]\) for sufficiently large \(n \). Since \([f \leq r]\) is sequentially compact there is again a subsequence \(y_j = x_{n(j)} \) which converges to a point \(x_0 \in [f \leq r] \). Since \(f \) is lower semicontinuous we conclude

\[I \leq f(x_0) \leq \lim_{j \to \infty} \inf f(y_j) = I. \]

\[\square \]

Theorem 5.1.39 A finite upper semicontinuous function \(f \) defined on a compact topological space \(T \) is bounded from above.

Proof:

\[\square \]

Theorem 5.1.40 A finite upper semicontinuous function \(f \) defined on a compact topological space \(T \) achieves its least upper bound on \(T \).

Proof:

\[\square \]

Conjugate points

We consider a congruence of null geodesics with affine parameter \(v \) and tangent \(V^a \). The expansion of the geodesics may be defined as \(\theta = D_a V^a \), where \(D_a \) is the covariant derivative.

The propagation equation for \(\theta \) leads to this inequality:

\[\frac{d\theta}{dv} \leq -\frac{1}{2} \theta^2 - R_{ab} V^a V^b. \] (5.16)

Suppose that (i) \(R_{ab} V^a V^b \geq 0 \) for all null vectors \(V^a \) (this is called the null convergence condition), (ii) the expansion, \(\theta \), is negative at some point \(v = v_0 \) on a geodesic \(\gamma \), and (iii) \(\gamma \) is complete in the direction of increasing \(v \) (i.e., \(\gamma \) is defined for all \(v \geq v_0 \)). Then \(\theta \to -\infty \) along \(\gamma \) a finite affine parameter distance from \(v_0 \).

maximum and minimum of functions of one variable. If \(f'(a) = 0 \), then we know that \(f(x) \) is stationary at \(x = a \). We then go on to study the sign of \(f''(a) \). If it is positive, then \(f(x) \) has a minimum value at \(x = a \), if it is negative, then \(f(x) \) has a maximum value at \(x = a \), and if \(f''(a) = 0 \).
\[\tau(\alpha) := \int_a^b f(\alpha,t)dt \] where \(f = (-t^\alpha t_a)^{1/2} \). Recall

\[\frac{d\tau}{d\alpha} \bigg|_{\alpha=0} = 0. \] (5.17)

for independent of the variation function \(\eta \).

Interested in the sign of the second variation of the length function,

\[\frac{d^2 \tau}{d\alpha^2} \bigg|_{\alpha=0} \] (5.18)

For it to be a maximum the sign of must be negative independently of the choice of the deviation function \(\eta(x) \).

conjugate point if

\[\frac{d^2 \tau}{d\alpha^2} \bigg|_{\alpha=0} = 0. \] (5.19)

Proposition 5.1.41 Let \(A \) and \(B \) be achronal topological manifolds in a strongly causal space-time \(M \). Then the length function is upper semi-continuous on \(T(A,B) \).

Proof: Let \(\gamma_k \rightarrow \gamma_0 \) in \(T(A,B) \). We wish to show that \(\limsup \{L(\gamma_k)\} \leq L(\gamma_0) \). Choose a subsequence of \(\{\gamma_k\} \) and relabel so that \(L(\gamma_k) \rightarrow \limsup \{L(\gamma_k)\} \). It is sufficient to prove the proposition in the case that \(\gamma_0 \) is a geodesic and \(T(A,B) \subset N \), a simple region.

Let \(x_k, y_k \) be intersections of \(\gamma_k \) with \(A \) and \(B \) respectively; and let \(\mu_k \) be the unique causal geodesic \([x_k,y_k]\) lying in \(N \). Since \(\gamma_k \rightarrow \gamma_0 \), we have \(x_k \rightarrow x_0 \) and \(y_k \rightarrow y_0 \).

Also, since \(L \) is a continuous function on geodesics joining two continuous surfaces, we have \(L(\mu_k) \rightarrow L(\gamma_0) \). By local maximality of geodesics, for every \(k \) we have \(L(\gamma_k) \leq L(\mu_k) \). Thus \(\lim \{L(\gamma_k)\} = a \leq \lim \{L(\mu_k)\} \), and so the superior limit of the original sequence is less than or equal to \(L(\gamma_0) \).

Two points joined by a timelike curve can be connected by a broken null geodesic, hence, the length function is not a lower continuous function.

\[\square \]

Theorem 5.1.42 There is a curve \(\gamma \in C_K(A,B) \) with maximum length.

An upper semi-continuous function on a compact set attains its maximum.

\[\square \]

Note that \(\gamma \) needn’t be unique and needn’t be a geodesic.
5.1.9 Timelike Congruences

We are considering a smooth congruence of timelike geodesics. The geodesics are parameterized by proper time τ.

...so that the vector fields V^a of tangents is normalized to unit length: $V^a V_a = -1$.

We define the transverse metric or “spatial metric” by

$$h_{ab} = g_{ab} + V_a V_b.$$ \hspace{1cm} (5.20)

It is easily seen that the four tensor

$$h^a_b = g^{ac} h_{cb} = \delta^a_b + V^a V_b$$ \hspace{1cm} (5.21)

is the projection operator onto the subspace of the tangent space perpendicular to $V a$ as

$$h^a_b V^b = (\delta^a_b + V^a V_b) V^b = 0 \text{ and if } W^a V_a \text{ then } h^a_b W^b = W^a.$$

The expansion, twist and shear of the field

The expansion, shear and twist of the field are defined by
Figure 5.53: If A and B are parallel in Minkowskian spacetime then γ_1 and γ_2 are maximal.
(b) Here there is only one element in $C_K(A, B)$ which is necessarily maximal. It is not a geodesic.
(c) Here the maximal element is a trip.

\[\theta_{ab} = h_a^c h_b^d \nabla_{(d} V_{c)} \]
(5.22)

\[\theta = h^{ab} h_a^c h_b^d \nabla_{(d} V_{c)} \]
\[= h^{cd} \nabla_{(d} \eta_{c)} \]
(5.23)

\[\omega_{ab} = h_a^c h_b^d \nabla_{[d} V_{c]} \]
(5.24)

\[\sigma_{ab} = h_a^c h_b^d \nabla_{(d} V_{c)} - \frac{1}{3} \theta h_{ab} \]
(5.25)

\[\theta = h^{ab} h_a^c h_b^d \nabla_{(d} V_{c)} \]
\[= h^{cd} \nabla_{d} V_{c} \]
(5.26)

The Raychaudhuri equations

Note that $\nabla_b V_a$ can be decomposed as

\[\nabla_b V_a = \frac{1}{3} \theta h_{ab} + \sigma_{ab} + \omega_{ab} \]
(5.27)

\[V^c \nabla_c (\nabla_b V_a) = V^c \nabla_b \nabla_c V_d + V^c (\nabla_c \nabla_b - \nabla_b \nabla_c) V_d \]
\[= V^c \nabla_b \nabla_c V_d + R_{cba}^d V^c V_d \]
\[= \nabla_b (V^c \nabla_c V_d) - (\nabla_b V^c) (\nabla_c V_a) + \frac{1}{3} \theta h_{ab} \]
(5.28)
where we used $V^c \nabla_c V_d = 0$. In the following it should be kept in mind that θ_{ab} and σ_{ab} are symmetric while ω_{ab} is antisymmetric. Taking the trace over a and b we obtain,

$$V^c \nabla_c \theta = - \left(\frac{1}{3} h^{ca} + \sigma^{ca} + \omega^{ca} \right) \left(\frac{1}{3} h_{ac} + \sigma_{ac} + \omega_{ac} \right) - R_{cd} V^c V^d$$

$$= - \frac{1}{3} \theta^2 - \sigma_{ab} \sigma^{ab} + \omega_{ab} \omega^{ab} - R_{cd} V^c V^d \tag{5.29}$$

and so

$$\frac{d\theta}{ds} = - \frac{1}{3} \theta^2 - \sigma_{ab} \sigma^{ab} - \omega_{ab} \omega^{ab} - R_{cd} V^c V^d \tag{5.30}$$

where $\omega_{ab} \omega^{ab} \geq 0$ and $\sigma_{ab} \sigma^{ab} \geq 0$. This is the Raychaudhuri equation and is of great importance for the singularity theorem. Note that vorticity induces expansion which is in analogy with centrifugal force while shear induces contraction.

We turn to the corresponding equation for the shear,

The trace-free, symmetric part

The trace-free part of a tensor X_{ab} is

$$T_{ab} = X_{ab} - \frac{1}{3} h_{ab} h^{cd} X_{cd}$$

The symmetric part of a tensor T_{ab} is

$$\frac{1}{2} (T_{ab} + T_{ba}) \equiv T_{(ab)} = X_{(ab)} - \frac{1}{3} h_{ab} h^{cd} X_{cd}.$$

Or

$$T_{(ab)} = \left(\delta^c_{(a} \delta^d_{b)} - \frac{1}{3} h_{ab} h^{cd} \right) X_{cd}.$$

The trace-free, symmetric part of $-(\nabla_b V^c)(\nabla_c V_a) + R_{cd} V^c V^d$ is
\[\nabla (b V_a) - \frac{1}{3} h_{ab} h^{cd} \nabla_d V_c = -\left[(\nabla_c V(a) (\nabla_b V_c) - \frac{1}{3} h_{ab} h^{ef} (\nabla_c V_c) (\nabla_f V^c) \right] + R_{cbad} V^c V^d \\
\quad - \frac{1}{3} h_{ab} h^{ef} R_{c(fe)d} V^c V^d \\
= \cdots + R_{cbad} V^c V^d - \frac{1}{3} h_{ab} (g^{ef} + V^e V^f) R_{c(fe)d} V^c V^d \\
\quad = \cdots + R_{cbad} V^c V^d - \frac{1}{3} h_{ab} g^{ef} R_{c(ef)d} V^c V^d \\
\quad = \cdots + R_{cbad} V^c V^d + \frac{1}{3} h_{ab} g^{ef} R_{c(ef)d} V^c V^d \\
= \cdots + R_{cbad} V^c V^d + \frac{1}{3} h_{ab} R_{cd} V^c V^d \quad (5.31) \]

\[-\frac{1}{3} h_{ab} V^c \nabla_c \theta = -\frac{1}{3} h_{ab} V^c \nabla_c (h^{ef} \nabla_f V_e) \\
\quad = -\frac{1}{3} h_{ab} h^{ef} V^c \nabla_c (\nabla_f V_e) \\
\quad = -\frac{1}{3} h_{ab} h^{ef} V^c (\nabla_c \nabla_f V_e - \nabla_f \nabla_c V_e) - \frac{1}{3} h_{ab} h^{ef} [V^c \nabla_f \nabla_c V_e] \\
\quad = -\frac{1}{3} h_{ab} h^{ef} R_{edcf} V^c V^d - \frac{1}{3} h_{ab} h^{ef} [\nabla_f (V^c \nabla_c V_e) - (\nabla_f V^c) (\nabla_c V_e)] \\
\quad = -\frac{1}{3} h_{ab} h^{ef} R_{c(ef)d} V^c V^d + \frac{1}{3} h_{ab} h^{ef} (\nabla_c V_e) (\nabla_f V^c) \quad (5.32) \]

Therefore

\[\nabla (b V_a) - \frac{1}{3} h_{ab} h^{cd} \nabla_d V_c = -\left[(\nabla_c V(a) (\nabla_b V_c) + R_{cbad} V^c V^d - \frac{1}{3} h_{ab} V^c \nabla_c \theta \quad (5.33) \]
Derivative of the shear

\[V^c \nabla_c \sigma_{ab} = V^c \nabla_c (\nabla_b V_d) - \frac{1}{3} \theta h_{ab} \]

\[= V^c \nabla_c (\nabla_b V_d) - \frac{1}{3} h_{ab} V^c \nabla_c \theta \]

\[= -(\nabla_c V_a(\nabla_b V^c) + R_{c(ba)d} V^c V^d - \frac{1}{3} h_{ab} V^c \nabla_c \theta \]

\[= -\frac{1}{2} \left[\left(\frac{1}{3} \theta h_{ac} + \sigma_{ac} + \omega_{ac} \right) \left(\frac{1}{3} \theta h_{b} + \sigma_{b} + \omega_{b} \right) + a \leftrightarrow b \right] \]

\[+ R_{c(bad)} V^d V^d - \frac{1}{3} h_{ab} V^c \nabla_c \theta \]

\[= -\frac{1}{2} \left[\left(\frac{1}{9} \theta^2 h_{ab} + \sigma_{ab} + \sigma_{ac} \sigma_{b} + \omega_{ac} \omega_{b} \right) \right. \]

\[+ R_{c(bad)} V^d V^d - \frac{1}{3} h_{ab} \left(-\frac{1}{3} \theta^2 - \sigma_{cd} \sigma_{cd} + \omega_{cd} \omega_{cd} - R_{c(d)} V^d \right) \]

\[= -\frac{2}{3} \theta \sigma_{ab} - \sigma_{ac} \sigma_{b} - \omega_{ac} \omega_{b} + \frac{1}{3} h_{ab} (\sigma_{cd} \sigma_{cd} - \omega_{cd} \omega_{cd}) = R_{c(bad)} V^d V^d + \frac{1}{3} h_{ab} R_{c(d)} V^d \]

\[= -\frac{2}{3} \theta \sigma_{ab} - \sigma_{ac} \sigma_{b} - \omega_{ac} \omega_{b} + \frac{1}{3} h_{ab} (\sigma_{cd} \sigma_{cd} - \omega_{cd} \omega_{cd}) \]

\[+ R_{c(bad)} V^d V^d - \frac{1}{3} h_{ab} h_{ef} R_{c(fed)} V^d V^d \quad (5.34) \]

where we used (5.31).

Symmetric trace-free part of \(R_{c(bad)} V^d V^d \)

The symmetric trace-free of \(R_{c(bad)} V^d V^d \) is

\[R_{c(bad)} V^d V^d - \frac{1}{3} h_{ab} h_{ef} R_{c(fed)} V^d V^d = \left(\delta^c_{(a} \delta^d_{b)} - \frac{1}{3} h_{ab} h_{ef} \right) R_{c(fed)} V^d V^d. \quad (5.35) \]

In the following we will need the following

\[R_{c(bad)} V^d V^d = R_{dabc} V^d \]

\[= R_{bca(d)} V^d \]

\[= R_{ceda} V^d \]

\[= R_{c(bad)} V^d \quad (5.36) \]

This implies \(R_{c(ba)d} V^d V^d = R_{c(bad)} V^d V^d \) and \(R_{c(ba)d} V^d V^d = 0 \). So that the RHS of (5.35) can be written,
\[(\delta^e_a \delta^f_b - \frac{1}{3} h_{ab} h^{ef}) R_{cefd} V^c V^d. \]

Equation (5.37)

We use the decomposition of the Riemann tensor:

\[R_{cbad} = C_{cbad} - g_{cd} R_{ab} - g_{ba} R_{dc} - \frac{1}{3} R g_{[a} g_{d]b}. \]

Equation (5.38)

Notice it is anti-symmetric in \(a \) and \(d \). Using that \(C_{cbad} \) has the same symmetries of \(R_{cbad} \) (in particular \(R_{cbad} = R_{adbc} \)), means that the difference \(R_{cbad} - C_{cbad} \) in the above equation is also anti-symmetric in \(b \) and \(c \).

We take (5.37) and decompose it as follows

\[\left(\delta^e_a \delta^f_b - \frac{1}{3} h_{ab} h^{ef} \right) (C_{cefd} + [C_{cefd} - R_{cefd}]) V^c V^d. \]

Equation (5.39)

First note

\[\left(\delta^e_a \delta^f_b - \frac{1}{3} h_{ab} h^{ef} \right) C_{cefd} V^c V^d = \left(\delta^e_a \delta^f_b - \frac{1}{3} h_{ab} (g^{ef} + V^{ef}) \right) C_{cefd} V^c V^d = C_{cbad} V^c V^d \]

Equation (5.40)

where we have used \(C_{cefd} V^c V^d V^{ef} \equiv 0 \) and that the Weyl tensor is trace-free in any two indices.

Contracting both sides of (5.38) with \(V^c V^d \) we obtain

\[R_{cbad} V^c V^d = C_{cbad} V^c V^d - g_{[a} R_{b]} V^c V^d - g_{b[a} R_{d]c} V^c V^d - \frac{1}{3} R g_{[a} g_{d]b} V^c V^d. \]

Using \(g_{ab} V^b = h_{ab} V^b + V^a \)

\[-g_{[a} R_{b]} V^c V^d = \frac{1}{2} [g_{cd} R_{ab} - g_{ca} R_{db}] V^c V^d = \frac{1}{2} [R_{ab} + V_a R_{bd} V^d] \]

\[-g_{b[a} R_{d]c} V^c V^d = \frac{1}{2} [g_{ab} R_{cd} - g_{bd} R_{ac}] V^c V^d = \frac{1}{2} [g_{ab} R_{cd} V^c V^d + V_b R_{ac} V^c] \]

\[-\frac{1}{3} R g_{[a} g_{d]b} V^c V^d = -\frac{1}{2} \cdot \frac{1}{3} R [g_{ca} g_{db} - g_{cd} g_{ab}] V^c V^d = -\frac{1}{2} \cdot \frac{1}{3} R [V_a V_b + g_{ab}] \]
Using (5.41) in the above gives

\[
(R_{cBAD} - C_{cBAD}) V^c V^d = -g_{c[d} R_{a]b} V^c V^d - g_{b[a} R_{d]c} V^c V^d - \frac{1}{3} R g_{c[a} g_{d]b} V^c V^d
\]

\[
= \frac{1}{2} R_{ab} - \frac{1}{2} g_{ab} R_{cd} V^c V^d + V_{(a} R_{b)d} V^d - \frac{1}{2} \cdot \frac{1}{3} R h_{ab}
\]

(5.41)

Using \(\delta_a^b = h_a^b - V_a V^b \) and the anti-symmetry in \(d \) and \(f \), and the anti-symmetry in \(c \) and \(e \) of \(R_{cxfd} - C_{cefd} \),

\[
\left(\delta_a^f \delta_b^e - \frac{1}{3} h_{ab} h^{ef} \right) R_{cefd} V^c V^d = C_{cBAD} V^c V^d + \left(h_a^f h_b^e - \frac{1}{3} h_{ab} h^{ef} \right)
\]

\[
\left(R_{cefd} - C_{cefd} \right) V^c V^d
\]

\[
= C_{cBAD} V^c V^d + \left(h_a^f h_b^e - \frac{1}{3} h_{ab} h^{ef} \right) \left(R_{cefd} - C_{cefd} \right) V^c V^d
\]

(5.42)

Using (5.41) in the above gives

\[
\left(\delta_a^f \delta_b^e - \frac{1}{3} h_{ab} h^{ef} \right) R_{cefd} V^c V^d = C_{cBAD} V^c V^d + \left(h_a^f h_b^e - \frac{1}{3} h_{ab} h^{ef} \right)
\]

\[
\left(\frac{1}{2} R_{fe} - \frac{1}{2} g_{fe} R_{cd} V^c V^d + V_{(f} R_{e)d} V^d - \frac{1}{2} \frac{1}{3} R h_{fe} \right)
\]

\[
= C_{cBAD} V^c V^d + \frac{1}{2} h_a^e h_b^f R_{fe} - \frac{1}{2} \frac{1}{3} h_{ab} h^{ef} R_{fe} +
\]

\[
- \frac{1}{2} \left(h_a^f h_b^e g_{fe} - \frac{1}{3} h_{ab} h^{ef} g_{fe} \right) R_{cd} V^c V^d
\]

\[
+ \frac{1}{2} \left(h_a^f h_b^e V_{(f} R_{e)d} V^d - \frac{1}{3} h_{ab} h^{ef} V_{(f} R_{e)d} V^d \right) = 0
\]

\[
- \frac{1}{2} \frac{1}{3} h_a^f h_b^e R_{fe} + \frac{1}{2} \frac{1}{3} \frac{1}{3} h_{ab} h^{ef} R h_{fe}.
\]

(5.43)

It is easy to check

\[
h_a^f h_b^e = h_{ab} \quad h_a^f h_b^e h_{fe} = h_{ab} \quad h^{ef} h_{fe} = 3 \quad h^{ef} g_{fe} = h^{ef} (h_{fe} - V_f V_e) = 3.
\]

Substituting this into (5.43) gives

\[
\left(\delta_a^f \delta_b^e - \frac{1}{3} h_{ab} h^{ef} \right) R_{cefd} V^c V^d = C_{cBAD} V^c V^d + \frac{1}{2} \left(h_a^e h_b^d R_{cd} - \frac{1}{3} h_{ab} h^{ed} R_{cd} \right).
\]

(5.44)
And so (5.34) becomes

$$\frac{d\sigma_{ab}}{ds} = -\frac{2}{3}\theta\sigma_{ab} - \sigma_{ac}\sigma_{b}^{c} - \omega_{ac}\omega_{b}^{c} + \frac{1}{3}h_{ab}(\sigma_{cd}\sigma^{cd} - \omega^{cd}\omega_{cd})$$

$$+ C_{cbad}V^{c}V^{d} + \frac{1}{2}\left(h_{ac}h_{bd}R_{cd}^{cd} - \frac{1}{3}h_{ab}h_{cd}R_{cd}^{cd}\right).$$

(5.45)

Since the Weyl tensor is trace-free, it does not appear in the equation in the expansion equation (5.30). However, as the terms $-2\sigma^{2} (= -2\sigma_{ab}\sigma_{ab})$ occurs on the right-hand side of the expansion equation, the Weyl tensor induces convergence indirectly by inducing shear.

The Weyl tensor is the part of the Reimann tensor not depending on the Ricci tensor. From the Einstein equations,

$$R_{ab} - \frac{1}{2}g_{ab}R + \Lambda g_{ab} = 8\pi T_{ab},$$

we see that it is the Ricci tensor, R_{ab}, is determined locally by the matter distribution. Thus the Weyl tensor is the part of the curvature which is not determined locally by the matter distribution.

Derivative of vorticity

And from the anti-symmetric part of (5.28) yields

$$V^{c}\nabla_{c}\omega_{ab} = V^{c}\nabla_{c}(\nabla_{[b}V_{a]})$$

$$= -(\nabla_{[a}V_{b]})(\nabla_{b}V^{c}) + R_{[c[b]}V_{d]}V^{c}V^{d}$$

$$= -(\nabla_{[a}V_{b]})(\nabla_{b}V^{c})$$

$$= \frac{1}{2}[(\nabla_{a}V_{b})(\nabla_{b}V^{c}) - a \leftrightarrow b]$$

$$= -\frac{1}{2}\left[\left(\frac{1}{9}\theta^{2}h_{ab} + \frac{2}{3}\theta\sigma_{ab} + \frac{2}{3}\theta\omega_{ab} + \sigma_{ac}\sigma_{b}^{c} + 2\sigma_{c}^{i}\omega_{ac} + \omega_{ac}\omega_{b}^{c}\right) - a \leftrightarrow b\right]$$

$$= -\frac{2}{3}\theta\omega_{ab} - 2\sigma_{[b}\omega_{a]c}$$

(5.46)

and so

$$\frac{d\omega_{ab}}{ds} = -\frac{2}{3}\theta\omega_{ab} - 2\sigma_{[b}\omega_{a]c}.\quad (5.47)$$
Conjugate points

A pair of points $p, q \in \gamma$ if there is a jacobik field η^a which is not identically zero but vanishes at both p and q. Or p and q are conjugate if an an infinitesimally nearby geodesic intersects γ at both p and q.

Equation of geodesic deviation

Let γ be a timelike geodesic with tangent ξ^a. Consider a congruence of timelike geodesics passing through p. It is convenient to introduce an orthonormal basis of spatial vectors e_1^a, e_2^a, e_3^a orthogonal to ξ^a and parallely propagated along γ. The components, $\eta^a := \eta^a e_a^a$, of the vector η^a which represents the separation between a geodesic $\gamma(s)$ and a neighbouring geodesic then satisfies the Jacobi equation

$$\frac{d^2 \eta^\mu}{d\tau^2} = - \sum_{\alpha,\beta,\nu} R_{\alpha\beta\nu}^{\mu} \xi^\alpha \eta^\beta \xi^\nu \quad (5.48)$$

The value of η at time s depends linearly on the initial data $\eta(0)$ and $d\eta^\mu/ds(0)$ at p. Since, by construction, $\eta^\mu(0) = 0$ for this congruence, we must have

$$\eta_\mu(s) = \sum_{\nu=1}^3 A_{\mu \nu}(s) \frac{d\eta^\nu}{ds}(0) \quad (5.49)$$

The matrix $A_{\alpha \beta}$

By (5.49) we have

$$\frac{d^2 A^\mu_{\nu}}{ds^2} = \sum_{\nu=1}^3 \frac{d^2}{ds^2} A^\mu_{\nu}(s) \frac{d\eta^\nu}{ds}(0)$$

$$= - \sum_{\alpha, \beta, \sigma} R_{\alpha \beta \sigma}^{\mu} \xi^\alpha \eta^\beta \xi^\sigma$$

$$= - \sum_{\alpha, \beta, \sigma} R_{\alpha \beta \sigma}^{\mu} \xi^\alpha \xi^\sigma \left(\sum_{\nu=1}^3 A_{\beta \nu}(s) \frac{d\eta^\nu}{ds}(0) \right) \quad (5.50)$$

so that $A^\mu_{\nu}(s)$ satisfies the equation

$$\frac{d^2 A^\mu_{\nu}}{ds^2}(s) = - \sum_{\alpha, \beta, \nu} R_{\alpha \beta \sigma}^{\mu} \xi^\alpha \xi^\sigma A_{\beta \nu}(\tau) \quad (5.51)$$
With
\[
\frac{d\eta^\mu}{d\tau}(\tau) = \sum_{\nu=1}^3 \frac{dA^\mu_{\nu}}{d\tau}(\tau) \frac{d\eta^\nu}{d\tau}(0)
\] (5.52)
clearly, we also have
\[
A_{\mu\nu}(0) = 0, \quad \frac{dA_{\mu\nu}}{d\tau}(0) = \delta_{\nu\mu}.
\] (5.53)

By definition of \(\frac{d}{d\tau}\)

\[
\frac{d}{d\tau}\eta_\alpha = V_{\alpha;\beta}\eta_\beta
\] (5.54)
or in terms of \(A_{\alpha\beta}\)

\[
\sum_{\nu=1}^3 \frac{dA_{\mu\nu}}{d\tau}(\tau) \frac{d\eta^\nu}{d\tau}(0) = V_{\alpha;\beta} \sum_{\nu=1}^3 A_{\beta\nu}(\tau) \frac{d\eta^\nu}{d\tau}(0)
\] (5.55)
or

\[
\frac{dA_{\alpha\beta}}{d\tau}(\tau) = V_{\alpha;\gamma} A_{\gamma\beta}(\tau)
\] (5.56)

Assuming \(A_{\alpha\beta}\) is invertible we can write

\[
V_{\alpha;\beta}(\tau) = A^{-1}_{\gamma\beta} \frac{d}{ds} A_{\alpha\gamma}
\] (5.57)

This allows the vorticity and the expansion tensor as well as the expansion scalar to be expressed in terms of the matrix \(A_{\alpha\beta}\) and its inverse \(A^{-1}_{\alpha\beta}\):

\[
\omega_{\alpha\beta} = -A^{-1}_{\gamma[\alpha} \frac{d}{ds} A_{\beta]\gamma}
\] (5.58)

\[
\theta_{\alpha\beta} = A^{-1}_{\gamma[\alpha} \frac{d}{ds} A_{\beta]\gamma}
\] (5.59)

\[
\theta = trB = tr \left(\frac{dA}{d\tau} A^{-1} \right)
\] (5.60)
(so that \((\det A)^3\) measures a spacelike 3-volume element orthogonal to \(\gamma\) and transported along the curves of the congruence)? proof?

Consider

\[
\frac{d}{d\tau} \det A = \frac{dA_{ij}}{d\tau} \frac{\partial}{\partial A_{ij}} \det A \quad (5.61)
\]

Recall from (C.5.9)

\[
\frac{\partial}{\partial A_{ij}} \det A = \tilde{A}_{ij} = \det(A^{-1})_{ji} \quad (5.62)
\]

where \(\tilde{A}_{ij}\) are the cofactors of \(A\). Together we get

\[
\frac{d}{d\tau} \det A = \det A \left(\frac{dA_{ij}}{d\tau} (A^{-1})_{ji} \right) \quad (5.63)
\]

So (5.91) can be written

\[
\theta = \frac{d}{d\tau} (\ln|\det A|) \quad (5.64)
\]

\[
\sigma_{ab} = h^c_a h^d_b \nabla_{(d\eta_c)} - \frac{1}{3} \theta h_{ab} \quad (5.65)
\]

Consider the quantity

\[
A_{\alpha\delta\omega_{\alpha\gamma}} A_{\alpha\delta} = \frac{1}{2} \left(\left(\frac{d}{dt} A_{\alpha\beta} \right) A_{\alpha\delta} - A_{\alpha\beta} \frac{d}{dt} A_{\alpha\delta} \right) \quad (5.66)
\]

It is easy to verify that this quantity is constant along \(\gamma(t)\) by differentiating both sides and using (5.51),

\[
\frac{d}{ds} (A_{\alpha\delta\omega_{\alpha\gamma}} A_{\alpha\delta}) = \frac{1}{2} \frac{d}{ds} \left(A_{\gamma\alpha} \frac{d}{ds} A_{\gamma\beta} - A_{\gamma\beta} \frac{d}{ds} A_{\gamma\alpha} \right) \\
= \frac{1}{2} \left(A_{\gamma\alpha} \frac{d^2}{ds^2} A_{\gamma\beta} - A_{\gamma\beta} \frac{d^2}{ds^2} A_{\gamma\alpha} \right) \\
= \frac{1}{2} (A_{\gamma\alpha} R_{\gamma\delta\beta} A_{\delta\alpha} - A_{\gamma\beta} R_{\gamma\delta\beta} A_{\delta\alpha}) \\
= \frac{1}{2} (A_{\gamma\alpha} R_{\gamma\delta\beta} A_{\delta\alpha} - A_{\gamma\beta} R_{\delta\gamma\beta} A_{\delta\alpha}) \\
= 0 \quad (5.67)
\]
where we used $R_{\gamma\delta\epsilon}\rho = R_{\delta\epsilon\gamma}\rho$. The RHS of (5.66) vanishes where $A_{\alpha\beta}$ is zero and so must be zero all along $\gamma(t)$,

$$A_{\alpha\delta}\omega_{\alpha\gamma}A_{\alpha\delta} = 0. \quad (5.68)$$

When $A_{\alpha\beta}$ is invertable, we can apply the inverse matrix of A to both sides and so conclude that $\omega_{\alpha\beta} = 0$ when $A_{\alpha\beta}$ is non-singular.

$$\frac{d^2}{ds^2}Z^\alpha = -R_{\alpha\gamma\delta}Z^\beta \quad (5.69)$$

$$\frac{d^2}{ds^2}A_{\alpha\beta} = -R_{\alpha\gamma\delta}A_{\gamma\beta} \quad (5.70)$$

The expansion θ is defined as $(\det A)^{-1}d(\det A)/ds$. Since $A_{\alpha\beta}$ obeys the ordinary differential equation (), $d(\det A)/ds$ will be finite.

Proposition 5.1.43 (The focussing theorem) Take any inextendable geodesic $\gamma(\lambda)$. If at some point $\gamma(\lambda_1)$ ($\lambda_1 > 0$), the expansion has a negative value $\theta_1 < 0$ and if $R_{ab}V^aV^b$ everywhere positive then there will be a point conjugate to q along $\gamma(\lambda)$ between $\gamma(\lambda_1)$ and $\gamma(\lambda_1 + (3/\theta_1))$.

The Raychaudhuri equation for non-rotating flow implies

$$\dot{\theta} \leq -\frac{1}{3}\theta^2. \quad (5.71)$$

Writing it in the form $\theta^{-2}\ddot{\theta} \leq -(1/3)$

$$\int_{\lambda_1}^{\lambda_2} d\lambda \theta^{-2}\ddot{\theta} = \int_{\theta(\lambda_1)}^{\theta(\lambda_2)} d\theta \theta^{-2} = \left[-\theta^{-1}\right]_{\theta(\lambda_1)}^{\theta(\lambda_2)} \leq -\frac{1}{3}(\lambda_2 - \lambda_1) \quad (5.72)$$

rearranging gives:

$$-\theta(\lambda_2) \geq \left[-\theta(\lambda_1)^{-1} - \frac{\lambda_2 - \lambda_1}{3} \right]^{-1} \quad (5.73)$$

From this inequality we see that if the congruence is initially converging ($\theta(0) < 0$), then $\theta(\lambda) \to -\infty$ within an affine parameter $\lambda \leq 3/\theta(0)$. This demonstrates the irreversible tendency of neighbouring geodesics to converge. Of course, this represents merely a singularity in the congruence, not a singularity in the structure of spacetime itself. However, this result is key to the singularity theorems, as the above may not be possible if spacetime is geodesically incomplete, and as already stated, this incompleteness is interpreted as evidence of a singularity.

544
The time-reversed version of the argument holds \((s \rightarrow -s, V^a \rightarrow -V^a, \text{and } \omega \rightarrow -\omega = 0)\) of this theorem where if \(\theta(0) > 0\) at a point then there was must have been a point an affine parameter \(\lambda \leq 3/|\theta(0)|\) distance away in the past where \(\theta(-\lambda) \rightarrow -\infty\).

The Weyl tensor expresses the tidal force that a body experiences when moving along a geodesic. The Weyl tensor differs from the Riemann curvature tensor in that it does not contain information on how the volume of the body changes, but rather only on how the shape of the body is distorted by the tidal force. The Ricci curvature contains precisely the information about how the volume changes in the presence of tidal forces. The Weyl curvature is the only part of the curvature that exists in free space. The effect of the Ricci tensor are due to a matter distribution and has a positive focusing effect.

attractive instability of gravity.

proposition (5.1.43), all that is required for the existence of conjugate points \(\gamma\) is that \(R_{ab}^{\xi^a \xi^b} \geq 0\) everywhere on \(\gamma\) and \(R_{abcd}^{\xi^b \xi^d} \neq 0\) at least one point of \(\gamma\). We prove this in section 5.1.11 on the equivalence of the two versions of the singularity theorem.

\[
\frac{\partial \tau}{\partial \alpha}(\alpha) = \int_a^b \frac{\partial}{\partial \alpha} f(\alpha)
\]

\[
= \int_a^b X^a \nabla_a (-T^a T_a)^{1/2}
\]

\[
= -\int_a^b \frac{1}{f} T_b X^a \nabla_a T^b dt
\]

\[
= -\int_a^b \frac{1}{f} T_b T^a \nabla_a X^b dt
\]

\[
= -\int_a^b T^a \nabla_a (X^b T_b/f) dt + \int_a^b X^b T^a \nabla_a (T_b/f) dt
\]

\[
= \int_a^b X^b T^a \nabla_a (T_b/f) dt
\]

(5.74)

\[
\frac{d^2 \tau}{d\alpha^2} = \int_a^b X^c \nabla_c [X^b T^a \nabla_a (T_b/f)] dt
\]

(5.75)
\[
\frac{d^2 \tau}{d\alpha^2} \bigg|_{\alpha=0} = \int_a^b X^c \nabla_c [X^b T^a \nabla_a (T_b / f)] dt
\]

\[
= \int_a^b X^b (X^c \nabla_c T^a) \nabla_a (T_b / f) dt + \text{ we used } X^c \nabla_c X^b = 0,
\]

\[
+ X^b T^a X^c \nabla_c \nabla_a (T_b / f) dt
\]

\[
= \int_a^b X^b (T^c \nabla_c X^a) \nabla_a (T_b / f) dt + \text{ we used } T^a \nabla_a X^a = X^a \nabla_a T^a
\]

\[
+ \int_a^b X^b T^a X^c \nabla_c (T_b / f) dt + \int_a^b X^b T^a X^c R_{cab} dT_d / f dt
\]

\[
= \int_a^b X^b T^c \nabla_c [X^a \nabla_a (T_b / f)] dt + \int_a^b X^b T^a X^c R_{cab} dT_d / f dt \quad (5.76)
\]

where we used

\[
\nabla_c \nabla_a (T_b / f) = \nabla_a \nabla_c (T_b / f) + R_{cab} (T_b / f) \quad (5.77)
\]

choosing the curve parameterization so that \(f = 1 \) along the geodesic \(\gamma_0 \) and also choosing the deviation vector to be orthogonal to \(T^a \) along \(\gamma_0 \).

\[
\frac{d^2 \tau}{d\alpha^2} \bigg|_{\alpha=0} = \int_a^b X^c \{ T^c \nabla_c (T^a \nabla_a X_b) + R_{cab} dT_d T^a X^c \} dt
\]

\[
= \int_a^b X^b (O) b dt \quad (5.78)
\]

(5.78)

the matrix \(A \) is non-singular between \(p \) and \(q \), \(Y^\mu = \sum_\nu (A^{-1})^{\mu \nu} X^\nu \).

Conjugate points for Timelike geodesics normal to spacelike three-surface

A point \(p \) on a geodesic \(\gamma \) of the geodesic congruence orthogonal to \(\Sigma \) is said to be conjugate to \(\Sigma \) along \(\gamma \) if there exists an orthogonal deviation vector \(\eta^a \) of the congruence which is nonzero on \(\Sigma \) but vanishes at \(p \). Intuitively, \(p \) is conjugate to \(\Sigma \) if two “infinitesimally nearby” geodesics orthogonal to \(\Sigma \) cross \(p \) as in fig ().

The three dimensional manifold \(\Sigma \) is defined locally by

\[
f = 0
\]

546
Figure 5.54: Displacement vectors for a hypersurface.

where f is second differentiable and $g^{ab} \partial_a f \partial_b f < 0$. The unit normal vector N to the surface Σ is

$$N^a = \frac{g^{ad} \nabla_d f}{(-g^{bc} \nabla_b f \nabla_c f)^{1/2}}$$

We define the second fundamental form χ of Σ as

$$\chi_{ab} = h_a^c h_b^d \nabla_d N_c$$ \hspace{1cm} (5.79)$$

where as before

$$h_{ab} = g_{ab} + N_a N_b$$

is the induced metric tensor on Σ (also called the first fundamental form). It follows that χ_{ab} is symmetric,

$$\chi_{ab} = h_a^c h_b^d \nabla_d N_c$$
$$= h_a^c h_b^d \left(\frac{\nabla_d \partial_c f}{\|f\|} - \partial_c f \nabla_d \frac{1}{\|f\|} \right)$$
$$= \frac{h_a^c h_b^d (\partial_d \partial_c f - \Gamma^e_{dc} \partial_e f)}{\|f\|} - (h_a^c \partial_c f) h_b^d \nabla_d \frac{1}{\|f\|}$$
$$= h_a^c h_b^d \nabla_c N_d$$
$$= \chi_{ba}$$ \hspace{1cm} (5.80)$$

where we used $\Gamma^e_{dc} = \Gamma^e_{cd}$ and $h_a^c \partial_c f = 0$.

The congruence of timelike geodesics orthonormal to Σ will consist of the timelike geodesics whose unit tangent vector V is the same as the unit normal N at Σ. Then
\[\nabla_b V_a = \chi_{ab} \quad \text{at } \Sigma. \quad (5.81) \]

When the congruence of geodesics are normal to the hypersurface the vorticity vanishes. Proof:
The unit normal vector to the hypersurface is

\[V_a = \frac{\nabla_a f}{\|f\|} \]

We calculate the vorticity,

\[\omega_{ab} = h_a^c h_b^d \nabla_{[d} V_{c]} \]
\[= \frac{h_a^c h_b^d}{2} \left[\nabla_d \left(\frac{\nabla_c f}{\|f\|} \right) - \nabla_c \left(\frac{\nabla_d f}{\|f\|} \right) \right] \]
\[= \frac{h_a^c h_b^d}{2} \left[\frac{\nabla_d \nabla_c f - \nabla_c \nabla_d f}{\|f\|} + \frac{\nabla_c f \nabla_d f}{\|f\|} - \nabla_d f \nabla_c f \frac{1}{\|f\|} \right] \]
\[= 0 \quad (5.82) \]

since \(\nabla_c \nabla_d f - \nabla_d \nabla_c f = 0 \) and \(h_a^c \nabla_c f = 0 \).

For the vector \(\eta \) which represents the separation of a neighbouring geodesic normal to \(\Sigma \) from a geodesic \(\gamma(s) \) normal to \(\Sigma \), we again have the equation of geodesic deviation for the separating vector,

\[\frac{d^2}{ds^2} \eta_\alpha(s) = -R_{\alpha \gamma \gamma} \eta_\gamma(s). \]

Also

\[\frac{d}{ds} \eta_\alpha(s) = \nabla_\beta V_\alpha \eta_\beta. \]

At a point on \(\gamma(s) \) at \(\Sigma \) we have the initial condition

\[\frac{d}{ds} \eta_\alpha = \chi_{\alpha \beta} \eta_\beta \quad (5.83) \]

We express the Jacobi fields along \(\gamma(s) \) which satisfy the above condition as

\[\eta^\mu(s) = \sum_{\nu=1}^{3} A_{\mu \nu}^\nu(s) \eta^\nu(0) \quad (5.84) \]
This $A^{\mu}_{\nu}(s)$ satisfies the same differential equation

So that

$$\frac{d\eta^{\mu}}{d\tau}(\tau) = \sum_{\nu=1}^{3} \frac{dA^{\mu}_{\nu}}{d\tau}(\tau)\eta^{\nu}(0)$$ \hspace{1cm} (5.85)$$

by

$$\frac{d\eta^{\alpha}}{d\tau}(\tau) = V_{\nu;\beta}\eta^{\beta}$$ \hspace{1cm} (5.86)$$
or in terms of $A_{\alpha\beta}(\tau)$

$$\sum_{\nu=1}^{3} \frac{dA_{\alpha\beta}}{ds}(s)\eta^{\beta}(0) = V_{\alpha;\gamma} \sum_{\nu=1}^{3} A^{\gamma}_{\beta}(s)\eta^{\beta}(0)$$ \hspace{1cm} (5.87)$$
or

$$\frac{dA_{\alpha\beta}}{ds}(s) = V_{\alpha;\gamma}A_{\gamma\beta}(s)$$ \hspace{1cm} (5.88)$$

which is of the same form as (5.56). This allows the vorticity and the expansion tensor as well as the expansion scalar to be expressed in terms of the matrix $A_{\alpha\beta}$ and its inverse $A^{-1}_{\alpha\beta}$ in the same way as before where there were different boundary conditions for $A_{\alpha\beta}$:

$$\omega_{\alpha\beta} = -A^{-1}_{\gamma[\alpha} \frac{d}{ds} A_{\beta]\gamma}$$ \hspace{1cm} (5.89)$$

$$\theta_{\alpha\beta} = A^{-1}_{\gamma(\alpha} \frac{d}{ds} A_{\beta)\gamma}$$ \hspace{1cm} (5.90)$$

$$\theta = trB = tr\left(\frac{dA}{d\tau} A^{-1}\right)$$ \hspace{1cm} (5.91)$$

Again the quantity

$$A_{\alpha\delta}\omega_{\alpha\gamma}A_{\alpha\delta} = \frac{1}{2} \left(\frac{d}{dt} A_{\alpha\beta}\right)A_{\alpha\delta} - A_{\alpha\beta} \frac{d}{dt} A_{\alpha\delta}$$ \hspace{1cm} (5.92)$$
is constant.

Thus on the hypersurface we have the boundary conditions
\[A_{\mu\nu}(0) = \delta_{\nu\mu}, \quad \frac{dA_{\mu\nu}}{d\tau}(0) = \frac{dA_{\nu\mu}}{d\tau}(0). \]

(5.93)

Proposition 5.1.44 Let \(M \) be a spacetime satisfying \(R_{ab}\xi^a\xi^b \geq 0 \) for all timelike \(\xi^a \). Let \(\Sigma \) be a spacelike hypersurface with \(K = \theta < 0 \) at a point \(q \in \Sigma \). Then within a proper time \(\tau \leq 3/|K| \) there exists a point \(p \) conjugate to \(\Sigma \) along the geodesic \(\gamma \) orthogonal to \(\Sigma \) and passing through \(q \), assuming that \(\gamma \) can be extended that far.

This is proved using the Raychaudhuri equation (5.30) as in proposition 5.1.43. If the congruence is hypersurface orthogonal, we have \(\omega_{ab} = 0 \), so that the third term vanishes. The second term, \(-\sigma_{ab}\sigma^{ab} \), is manifestly nonpositive. Thus we have

\[\frac{d\theta}{ds} + \frac{1}{3}\theta^3 \leq 0, \]

(5.94)

as before, which leads to

\[-\theta(s) \geq \left[-\theta^{-1}(0) - \frac{1}{3}s \right]^{-1}. \]

(5.95)

We are supposing that \(\theta(0) < 0 \), i.e. the congruence is initially converging.

\[\square \]

Again the time reverse version holds, important in proof of simple singularity theorem on cosmological singularity presented in the previous appendix.

![Diagram](image)

Figure 5.55.

Conversely

\[\omega_{ab} = 0 \]
implies

\[V_a = \nabla_a f \]

This is guaranteed by the Frobenius theorem.

The boundary conditions (5.93) will also be encountered in proposition 5.1.53.

5.1.10 The Singularity Theorems

\[I^+[S] \]

\[E^+[S] \]

\[S \]

Figure 5.56: Future horizons.

\[I^+[S] \]

\[E^+[S] \]

\[S \]

Figure 5.57: “Doubling” future horizons. \(E^+[S] \) is compact

Corollary 1: Let \(F \) be a future set, \(\gamma \) a null geodesic on \(\partial F \). Then \(\gamma \) contains no proper segment (a segment not \(\gamma \) itself or an empty set) which has a pair of conjugate points.

Proof: If \(x < y < z \) along \(\gamma \) with \(x \) and \(y \) conjugate, then \(z \in I^+(x) \) implies \(z \in F \) or in other words \(z \not\in \partial F \), which is false.

\[\square \]

Corollary 2: Let \(\mathcal{M} \) be a spacetime satisfying:

1. There are no closed trips
2. *Every* endless null geodesic in \(\mathcal{M} \) contains a pair of conjugate points.
Then is \mathcal{M} strongly causal.

Proof:

If not, and there are no closed trips, strong causality fails on an endless geodesic γ. By hypothesis, there are conjugate points A and B on γ with $a < A, b > B$. Then strong causality fails at a and b, and by the theorem, $I^+(a) \cap I^-(b) \neq \emptyset$ and there are closed trips (see remark following 5.1.10), which is false.

Proposition 5.1.45 Let S be future trapped and suppose strong causality holds in $\overline{I^+[S]}$. Then there is a future endless trip γ such that $\gamma \subset \text{int}D^+(E^+[S])$.

Proof: First we need to show $H^+[E^+[S]]$, if it exists, must be non-compact. The basic idea of the argument is given in fig (5.1.10)

![Figure 5.58: From the fact that H is a Cauchy horizon it follows that through every point of H there passes a maximally extended past-directed null geodesic that remains in H. Since H is compact, such a curve would have to come back arbitrarily close to itself - reentering some Alexandoff neighbourhood and so violating strong causality.](image)

Let $H = H^+[E^+[S]]$. Any trip which leaves $\text{int}D^+(E^+[S])$ crosses H. If $H = \emptyset$, then the proposition is proven. If not, then H must be non-compact. For, if H is compact, there are finitely many Alexandoff neighbourhoods covering H, say B_1, \ldots, B_k. There exists a point $I^+[S]/D^+(E^+[S])$; suppose $p \in B_i$. Then there is a point $q_i \in I^+[S]/D^+(E^+[S])$ such that $q_{i_1} << p$ and $q_{i_1} \in B_{i_1} - B_i$ for some i_1. The process continues by induction to yield $p >> q_{i_1} >> q_{i_2} >> \cdots >> q_{i_k} >> \cdots$. However, when the process has been repeated k times two (at least) of the q's must lie in the same B_{i_1}. By construction, the trip between these two must leave and then reenter B_{i_1} contradicting the fact that $\overline{I^+[S]}$ is strongly causal.

So H is non-compact. Let ξ be any nowhere vanishing timelike vector field on \mathcal{M}. Given a non-zero vector field ξ defined over the manifold, this can be used to define a congruence of curves over the manifold (a congruence of curves is defined such that only one curve goes through each point of the manifold). We use ξ to construct the family of trajectories from $E^+[S]$. If one of these trajectories leaves $\text{int}D^+(E^+[S])$, it intersects H. This mapping will have to be one-to-one as no point in this boundary can proceed itself. If all these trajectories leave, then a homeomorphism is established between $E^+[S]$ and H, which is impossible since $E^+[S]$ is compact, and H is not. So one trajectory remains inside.
Figure 5.59: $E^+[S]$ is compact by definition, however its Cauchy horizon is non-compact. As the two subsets cannot homeomorphic there must be at least one trajectory γ which remains in $\text{int} D^+ (E^+[S])$.

Theorem 5.1.46 The following are mutually inconsistent in any spacetime:

(a) There are no closed trips

(b) Every endless causal geodesic contains a pair of conjugate points

(c) There is a future (past) - trapped set S in M.

Proof: Under the assumptions that all three conditions are satisfied, (a) and (b) imply that M is strongly causal. This implies the existence of a future endless geodesic in $\text{int} D^+ (E^+(S))$ say γ. Define the compact set $T = \overline{T^- (\gamma)} \cap E^+(S)$. We argue that T is past-trapped. Since γ was contained in $\text{int} I^+(E^+(S))$, $E^-(T)$ would consist of T and a portion of $\dot{J}^- (\gamma)$, see fig (5.1.10). Since γ was future inextendible, the null geodesic segments generating $\dot{J}^- (\gamma)$ could have no future endpoints. But by (b) every inextendible non-spacelike geodesic contains a pair of conjugate points. Thus each generating segment of $\dot{J}^- (\gamma)$ would enter $I^- (\gamma)$. However, as $\text{int} D^+ (E^+[S])$ is globally hyperbolic, within this region on the null geodesic segments generating $\dot{J}^- (\gamma)$ there cannot occur a pair of conjugate points and so they intersect T. $E^-(T)$ is be compact being the intersection of the closed set $\dot{J}^- (\gamma)$ with a compact set generated by null geodesic segments from T of some bounded affine length. Then, by the time-reversed version of proposition 5.1.45 there exists α, a past endless causal geodesic in $\text{int} D^- (E^- (T))$.

Choose a sequence a_i receding into the past on α without limit point and a sequence c_i on γ going to the future. The sets $J^- (c_i) \cap J^+ (a_i)$ are compact, for all i, and so there is a maximal geodesic μ_i in $\mathcal{C}(a_i, c_i)$ for each i. The intersection with T (as it is compact) have a limit point q and a limiting direction. Construct the causal geodesic μ which has this direction at q.

Some nearby geodesic must meet γ more than once. But as γ is the limit curve of the sequence $\{\gamma_i\}$, so the nearby geodesic will meet at least one member γ_k of the sequence $\{\gamma_i\}$. This would
Figure 5.60: γ is a future endless causal geodesic in $\text{int} D^+(E^+(S))$. $H = H^+(E^+[S])$. As the intersection of the closed set $J^-(\gamma)$ with a compact set generated by null geodesic segments from T of some bounded affine length, $E^-[T]$ is compact.

mean we could lengthen that γ_k by rounding off corners, which contradicts that γ_k is the curve of maximum length from b_k to a_k.

\[\square \]

5.1.11 Implication of the "Displayed" Singularity Theorem from the Established Version

We now establish theorem 5.1.1 from theorem 5.1.2.

move on to establish between

Theorem 5.1.47 if M were timelike and null geodesically complete, (1) and (2) would imply (a) by 5.1.48. (3) is the same as (b). (1) and (4) would imply (c):

in case (i) \mathcal{L} would be the compact achronal set without edge and

\[E^+(\mathcal{L}) = E^-(\mathcal{L}) = \mathcal{L} \quad (5.96) \]

Refering to the two versions given in 5.1.1

Proof: To be given.

\[\square \]
Theorem 5.1.48 If for every non-spacelike vector \(K \) we have

\[
R_{ab}K^aK^b < 0
\] \hspace{1cm} (5.97)

and

(2) Every non-spacelike geodesic, with tangent vector \(K \), contains a point at which

\[
K_{[a} R_{b]cd[e}K_{f]}K^cK^d \neq 0.
\] \hspace{1cm} (5.98)

then every inextendible non-spacelike geodesic will contain a pair of conjugate points.

Proof: To be given.

We say that a spacetime satisfying the condition that every timelike or null geodesic contains a point at which \(K_{[a} R_{b]cd[e}K_{f]}K^cK^d \) is not zero satisfies the generic condition.

Before we give the proof of this theorem we discuss whether it is reasonable to assume the generic condition in physically realistic solutions. First note that for the timelike case the condition is

\[
V_{[a} R_{b]cd[e}V_{f]}V^cV^d \neq 0
\]

equivalent to \(R_{abcd}V^bV^c \neq 0 \):

\[
V_{[a} R_{b]cd[e}V_{f]}V^cV^d \neq 0
\] \hspace{1cm} (5.99)

Contracting this with \(V^aV^f \), using \(R_{abcd} = -R_{bacd} = -R_{abdc} \) and \(V^2 = -1 \) this becomes

555
Multiplying $R_{abcd}V^bV^d \neq 0$ by V_aV_f and antisymmetrizing between a and b, and between e and f gives us back Eq.(5.99), so the two conditions Eq.(5.99) and Eq.(5.100) are equivalent \(^3\).

One would expect every timelike geodesic to encounter some matter or some gravitational radiation and so contain some point where the tidal force is non-zero, i.e. a point where $R_{abcd}V^bV^d$ is non-zero. Thus one expect every timelike geodesic to contain pairs of conjugate points, provided that it could be extended sufficiently far in both directions.

As in the timelike case, this condition will be satisfied for a null geodesic which passes through some matter provided that the matter is not pure radiation () and moving in the direction of the geodesic tangent vector K. It will be satisfied in empty space if the null geodesic contains some point where the Weyl tensor is non-zero and where K does not lie in one of the directions at the point for which $K_{[a}R_{b]cdefk]}K^cK^d = 0$.

We break it down proof of 5.1.48 down into timelike then null case. First timelike case, in which it reads: If $R_{ab}V^aV^b \geq 0$ and if at some point $p = \gamma(s_1)$ the tidal force $R_{abcd}V^bV^d$ is non-zero, there will be values s_0 and s_2 such that $q = \gamma(s_0)$ and $r = \gamma(s_2)$ will be conjugate along γ, providing that $\gamma(s)$ can be extended to these values.

\(^3\)How do we know that the righthand side of Eq.(5.99), when contracted with V^aV^f is not zero? Well, if $R_{abcd}V^bV^c = 0$ this would mean that that $V[aR_{b]cdefk]}V^cV^d = 0$ which is false.
Mathematical preliminaries

Some mathematical preliminaries are needed in order to make lemma 5.1.52 more rigorous, although it is written so that it can be 'understood' without going into all such details.

Definition A set B is bounded if there is a point p in S and a radius $r > 0$ such that B is a subset of the neigbourhood $N_r(p)$.

Definition A function f from S to T is said to be bounded if the image set $f(S) = \{f(p) : p \in S\}$ is a bounded subset of T.

Proposition 5.1.49 Suppose that A is a compact subset of S and that f is a continuous function from A to T. Then the image $f(A) = \{f(p) : p \in A\}$ is a compact subset of T. In particular, f is bounded.

Proof:

Suppose \mathcal{V} is an open cover of $f(A)$. Let \mathcal{U} be the collection of subsets of S consisting of the inverse images of the sets in the collection \mathcal{V}. As f is a continuous function the inverse image of an open set is open in A. Given a point p in A, $f(p)$ belongs to some $V \in \mathcal{V}$, so p belongs to the set $f^{-1}(V)$ from the collection \mathcal{U}. Thus \mathcal{U} is an open cover of A. Let $\{U_1, \ldots, U_n\}$ be a finite subcover. Then each U_j is $f^{-1}(V_j)$ for some V_j in the collection \mathcal{V}, and the collection $\{V_j\}$ is a finite subcover of $f(A)$.

Thus everything proved for metric spaces carries over to the case of normed linear spaces.
Definition Supremum (sup) or least upper bound. If S is a nonempty set of real numbers, then a real number u is an upper bound of S if $x \leq u$ for every x in S. A number v is a least upper bound of S if v is an upper bound and no number less than v is an upper bound of S. Thus, the least upper bound is the smallest real number that is greater than or equal to every number in S.

The result concerning uniform continuity pertains to metric spaces. The standard metric in the space of continuous functions is obtained by starting with the norm

$$
\|f\| = sup\{|f(x)| : x \in X\} \quad (5.103)
$$

We check that the norm $\|f\|$ has the properties that define a norm:

$$
\begin{align*}
\sup\{|f(x)| : x \in X\} &\geq 0, \quad \sup\{|f(x)| : x \in X\} = 0 \iff f \equiv 0 \\
\sup\{|cf(x)| : x \in X\} &= |c| \cdot \sup\{|f(x)| : x \in X\}, \quad c \in \mathbb{R} \\
\sup\{|f(x) + g(x)| : x \in X\} &\leq \sup\{|f(x)| : x \in X\} + \sup\{|g(x)| : x \in X\}. \quad (5.104)
\end{align*}
$$

We can define a distance

$$
d(f,g) = \|f - g\| = sup\{|f(x) - g(x)| : x \in X\} \quad (5.105)
$$

for arbitrary $f,g \in N$. The distance between f and g is the maximum distance between their graphs. The fact that (5.105) it is a metric follows at once from the properties (5.101):

We can define different norms for matrices. This is well defined and finite because the image of a compact space under a continuous function is compact, in particular bounded.

Lemma 5.1.50 Let X and Y be metric spaces and $f : X \to Y$ a continuous function. If X is compact, then f is uniformly continuous.

Proof:

To prove the lemma we start with a number $\epsilon > 0$ and find a number $\delta > 0$ such that if $p,q \in X$ are any points such that $d_X(p,q) < \delta$ then $d_Y(f(p), f(q)) < \epsilon$.

First for each $p \in X$ we find a number $\delta(p)$ such that if $q \in X$ and

$$
d_X(p,q) < \delta(p) \text{ then } d_Y(f(p), f(q)) < \epsilon/2; \quad (5.106)
$$
this is always possible since \(f \) is continuous at \(p \). Let \(B(p) \) be the open ball in \(X \) with center \(p \) and radius \(\delta(p)/2 \). The open balls \(B(p) \) with \(p \) ranging over all points of \(X \) provides an open cover for \(X \). Since \(X \) is compact, there is a finite sub-cover. Thus there exists a finite number of points of \(X \), say \(p_1, p_2, \ldots, p_n \), such that \(X \) is the union of their open balls. Now define

\[
\delta = \min\{\delta(p_1)/2, \delta(p_2)/2, \ldots, \delta(p_n)/2\}
\]

This will be the \(\delta \) that satisfies our original demand. For suppose that \(p, q \in X \), with

\[
d_X(p, q) < \delta. \tag{5.107}
\]

For some \(i \) we have \(p \in B(p_i) \), so that

\[
d_X(p, p_i) < \delta(p_i)/2. \tag{5.106}
\]

Also

\[
d_X(p_i, q) \leq d_X(p_i, p) + d_X(p, q) < \delta(p_i)/2 + \delta \leq \delta(p_i).
\]

Thus

\[
d_X(p_i, p), d_X(p_i, q) \leq \delta(p_i)
\]

Now from (5.106) this means

\[
d_Y(f(p_i), f(p)) < \epsilon/2 \quad \text{and} \quad d_Y(f(p_i), f(q)) < \epsilon/2.
\]

Therefore

\[
d_Y(f(p), f(q)) \leq d_Y(f(p), f(p_i)) + d_Y(f(p_i), f(q)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \tag{5.108}
\]

whenever (5.107) is satisfied.

\[\Box\]
We prove some facts about the differentiability, smoothness and continuity of Taylor series. Functions that have derivatives of all orders are called smooth. If a function is differentiable at a point, then it must also be continuous there (the converse isn’t always true, for example the function $y = |x|$ is continuous at $x = 0$ but not differentiable there).

Before we move on to this question, let us remind the ourselves of one method used t determined if a series expansion to be absolutely convergent, namely the ratio test for absolute convergence: let $\sum a_n$ be a positive-term series, and suppose

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L < 1.$$

If $L < 1$ then the series is convergent. The proof of this is as follows: suppose $\lim_{n \to \infty} (a_{n+1}/a_n) = L < 1$. Let r be any number such that $0 \leq L < r < 1$. Since a_{n+1}/a_n is close to L if n is large, there exists an integer N such that whenever $n \geq N$,

$$\frac{a_{n+1}}{a_n} < r \quad \text{or} \quad a_{n+1} < a_n r.$$

Substituting $N, N + 1, N + 2, \ldots$ for n, we obtain

$$a_{N+1} < a_N r$$
$$a_{N+2} < a_{N+1} r < a_N r^2$$
$$a_{N+3} < a_{N+2} r < a_N r^3$$

and in general

$$a_{N+m} < a_N r^m \quad \text{whenever} \quad m > 0$$

Recall the basic comparison test; given two positive-terms series $\sum a_n$ and $\sum b_n$, if $\sum b_n$ converges and $a_n < b_n$ for every positive integer n greater than some N, then obviously the series $\sum a_n$ converges. It follows from the comparison test that the series

$$a_{N+1} + a_{N+2} + \cdots + a_{N+m} + \cdots$$

converges, since its terms are less than the corresponding terms of the convergent geometric series

$$a_N r + a_N r^2 + \cdots + a_N r^3 + \ldots$$

Since the convergence or divergence is unaffected by discarding a finite number of terms, the series $\sum_{n=0}^{\infty} a_n$.

560
Lemma 5.1.51 If the series
\[\sum_{n=0}^{\infty} a_n x^n \]
(5.110)
is absolutely convergent and has radius of convergence \(R > 0 \), then the associated function
\[f(x) = \sum_{n=0}^{\infty} a_n x^n \]
(5.110)
is differentiable at every point of the range of convergence and
\[f'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \ldots \]
(5.111)
Moreover, it will be smooth.

Proof:

First we prove that if the series (5.110) has a radius of convergence \(R \) then so does
\[\sum_{n=0}^{\infty} (n+1) a_{n+1} x^n \]
and
\[\sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n \]
(5.112)
The second of these have the same relation to the first as the first does to (5.110), so we need only consider the first. Multiplication by \(x \) gives the series \(\sum_{n=0}^{\infty} n a_n x^n \), which therefore converges for the same values of \(x \) and has the same radius of convergence \(\sum_{n=0}^{\infty} (n+1) a_{n+1} x^n \) itself.

Note
\[(y - x)(y^{n-1} + y^{n-2} x + \cdots + x^{n-1}) = y^n - x^n \]

\[a_n \left(\frac{y^n - x^n}{y - x} - nx^{n-1} \right) = a_n (y^{n-1} + y^{n-2} x + \cdots + x^{n-1} - nx^{n-1}) \]
\[= a_n (y^{n-1} - x^{n-1}) + (y^{n-2} - x^{n-2})x + \cdots + (y - x)x^{n-2} \]
\[= a_n (y - x) \left[\frac{y^{n-1} - x^{n-1}}{y - x} + \frac{y^{n-2} - x^{n-2}}{y - x} x + \cdots + \frac{y - x}{y - x} x^{n-2} \right] \]
(5.113)

Since \(|x| < r \) and \(|y| < r \),
\[\frac{|y^k - x^k|}{|y - x|} = |y^{k-1} + y^{k-2} x + \cdots + x^{k-1}| < k r^{k-1}. \]
(5.114)

Using (5.114) in (5.113) we get
\[a_n \left(\frac{y^n - x^n}{y - x} - n x^{n-1} \right) < |x - y| |a_n| [(n-1)r^{n-2} + (n-2)r^{n-3}r + \cdots + 2rr^{n-3} + r^{n-2}] \]
\[= |x - y| |a_n| r^{n-2} [(n-1) + (n-2) + \cdots + 1] \]
\[= \frac{1}{2} n(n-1) |x - y| |a_n| r^{n-2} \]
(5.115)

The power series with coefficients \(|a_n|\) has the same radius of convergence as that with \(a_n\).

\[\sum_{n=2}^{\infty} n(n-1)|a_n|r^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)|a_{n+2}|r^{n} \]
\[= K < +\infty \]
(5.116)

we get

\[\left| \frac{f(y) - f(x)}{y - x} - \sum_{n=1}^{\infty} n a_n x^{n-1} \right| < \frac{1}{2} K |y - x| \]
(5.117)

proving (5.111).

\(\square\)

Theorem for timelike geodesics from a point

Lemma 5.1.52 For any \(s^* > 0\), there exists \(C > 0\) such that if \(\max |A'_{\alpha\beta}(0)| \geq C\), \(A(0) = I_{3\times3}\), \(\text{Tr}(A'(0)) \leq 0\), \(A'(0)\) symmetric,

\[\frac{d^2 A_{\alpha\beta}}{ds^2} + A_{\alpha\gamma} R_{\gamma\beta\delta} = 0 \]
(5.118)

then \(\det(A)(s_1) = 0\) for some \(s_1 \in [0, s^*]\).

Proof:

As (5.118) is a linear ODE, the above condition can be restated as follows: for any \(s^* > 0\), there exists \(\sigma > 0\) such that if \(\max |A'_{\alpha\beta}| = 1\), \(A(0) = \sigma A I\) where \(0 < \sigma_A < \sigma\), \(\text{tr}(A'(0)) \leq 0\), \(A'(0)\) symmetric,

\[\frac{d^2 A_{\alpha\beta}}{ds^2} + A_{\alpha\gamma} R_{\gamma\beta\delta} = 0, \]
then \(\det(A)(s_1) = 0 \) for some \(s_1 \in [0, s^*] \). The equivalence of the two statements is established as follows: we have

\[
\max |A'_{\alpha\beta}(0)| = \tilde{C} \quad \text{where} \quad \tilde{C} \geq C.
\]

Set

\[
\tilde{A}'_{\alpha\beta}(0) := A'_{\alpha\beta}(0)/\tilde{C}
\]

then

\[
\tilde{A}_{\alpha\beta}(0) = \delta_{\alpha\beta}/\tilde{C}
\]

Given

\[
\frac{1}{C} \leq \frac{1}{\tilde{C}}
\]

Set

\[
\sigma_A = \frac{1}{C} \quad \text{and} \quad \sigma = \frac{1}{\tilde{C}}, \quad \sigma_A \leq \sigma.
\]

We then have \(\max |\tilde{A}'_{\alpha\beta}(0)| = 1, \tilde{A}(0) = \sigma_A \), where \(0 < \sigma_A < \sigma \) and obviously, \(tr\tilde{A}'(0) \leq 0 \) and \(\tilde{A}'(0) \) is symmetric. Given that (5.118) is a linear ODE we have

\[
\frac{d^2 \tilde{A}_{\alpha\beta}}{ds^2} + \tilde{A}_{\alpha\gamma}R_{\gamma\beta\delta\epsilon} = 0
\]

and the equivalence is established.

Now we turn to the proof of the second form of the lemma. Obviously, at \(s = 0 \) we have that the eigenvalues of \(A_{\alpha\beta} \) are all equal to \(\sigma_A > 0 \). To prove the lemma we shall show that there is a negative eigenvalue of \(A_{\alpha\beta} \) for some \(s_0 \in [0, s^*] \), as this implies an eigenvalue must become zero at some point \(s_1 \in [0, s_0] \) and hence \(\det(A)(s_1) = 0 \) for some \(s_1 \in [0, s^*] \). Let us proceed.

Write \(A_{\alpha\beta}(s) \) as a first order Taylor polynomial plus ‘remainder’,

\[
A_{\alpha\beta}(s) = A_{\alpha\beta}(0) + A'_{\alpha\beta}(0)s + r_{\alpha\beta}(s)
\]

We can find an expression for the remainder in terms of the value of \(A''_{\alpha\beta} \) for some value of \(s, s_{\alpha\beta} \), in the interval \([0, s]\). To this end, if \(t \) is any number in the interval \([0, s]\), let \(H_{\alpha\beta} \) be the function defined by

\[\text{563}\]
\[H_{\alpha\beta}(t) := A_{\alpha\beta}(s) - [A_{\alpha\beta}(t) + A'_{\alpha\beta}(t)(s-t)] - r_{\alpha\beta}(s)\frac{(s-t)^2}{s^2} \]

If we differentiate both sides of this equation with respect to \(t \), regarding \(s \) as a constant, we obtain

\[H'_{\alpha\beta}(t) = -A''_{\alpha\beta}(t)(s-t) + r_{\alpha\beta}(s) \cdot 2\frac{(s-t)}{s^2} \]

By the definition of \(H_{\alpha\beta} \) we easily see that \(H_{\alpha\beta}(s) = 0 \). We also note that

\[
H_{\alpha\beta}(0) = A_{\alpha\beta}(s) - [A_{\alpha\beta}(0) + A'_{\alpha\beta}(0)s] - r_{\alpha\beta}(s)\frac{s^2}{s^2}
= A_{\alpha\beta}(s) - [A_{\alpha\beta}(0) + A'_{\alpha\beta}(0)s + r_{\alpha\beta}(s)]
= 0.
\]

Hence there is a number \(s_{\alpha\beta} \) between 0 and \(s \) such that \(H'_{\alpha\beta}(s_{\alpha\beta}) = 0 \); that is

\[-A''_{\alpha\beta}(s_{\alpha\beta})(s - s_{\alpha\beta}) + r_{\alpha\beta}(s) \cdot 2\frac{(s - s_{\alpha\beta})}{s^2} = 0.\]

giving

\[r_{\alpha\beta}(s) = \frac{A''_{\alpha\beta}(s_{\alpha\beta})}{2!} s^2. \]

where \(s_{\alpha\beta} \) is some function of \(s \) and where \(0 \leq s_{\alpha\beta} \leq s \). Using this we obtain

\[A_{\alpha\beta}(s) = \sigma A \delta_{\alpha\beta} + s A'_{\alpha\beta}(0) + \frac{s^2}{2} A''_{\alpha\beta}(s_{\alpha\beta}(s)), \quad (5.119) \]

which is what we wished to prove. Next we want to show that \(|A_{\alpha\beta}(s)| \) on \([0, s^*] \) is bounded by a constant which is independent of the boundary conditions specified in the lemma. To this end we note that the differential equation (5.118) is equivalent to a system of first order differential equations which can be written in matrix form as

\[
\frac{d}{ds} \begin{pmatrix} A_{\alpha\beta}(s) \\ \frac{dA_{\alpha\beta}}{ds}(s) \end{pmatrix} = \begin{pmatrix} 0 & \delta_{\alpha\gamma} \\ -R_{4\alpha4\gamma}(s) & 0 \end{pmatrix} \begin{pmatrix} A_{\gamma\beta}(s) \\ \frac{dA_{\gamma\beta}}{ds}(s) \end{pmatrix} \quad (5.120)
\]

the solution of which is
\[
\left(\frac{A_{\alpha\beta}(s)}{dA_{\alpha\beta}(s)} \right) = \exp \left(- \int_0^s R_{4\alpha\gamma\beta}(t) \, dt \right) \left(\frac{A_{\gamma\beta}(0)}{dA_{\alpha\beta}(0)} \right) .
\]

(5.121)

We see from this is that any solution for \(A_{\alpha\beta}(s) \) will be of the general form

\[
A_{\alpha\beta}(s) = h_{\alpha\gamma}(s)A_{\gamma\beta}(0) + g_{\alpha\gamma}(s) \frac{d}{ds}A_{\gamma\beta}(0)
\]

(5.122)

where the functions \(h_{\alpha\gamma}(s) \) and \(g_{\alpha\gamma}(s) \) are solely determined by the matrix

\[
\exp \left(- \int_0^s R_{4\alpha\gamma\beta}(t) \, dt \right)
\]

(5.123)

and as such are independent of the initial conditions placed on \(A_{\alpha\beta} \). Now are \(|h_{\alpha\gamma}(s)| \) and \(|g_{\alpha\gamma}(s)| \) bounded?

Can we use the same kind proof involved in the ratio test but for a series where the ‘coefficients’ are matrices instead of numbers? Put

\[
Q_{\alpha\gamma}(s) := - \int_0^s R_{4\alpha\gamma\beta}(t) / s
\]

and let us expand (5.123):

\[
\begin{align*}
\exp \left(\begin{array}{ccc}
0 & \delta_{\alpha\gamma} s \\
Q_{\alpha\gamma} s & 0
\end{array} \right) & = \left(\begin{array}{cc}
\delta_{\alpha\gamma} & 0 \\
0 & \delta_{\alpha\gamma}
\end{array} \right) + s \left(\begin{array}{cc}
0 & \delta_{\alpha\gamma} \\
Q_{\alpha\gamma} & 0
\end{array} \right) + \frac{s^2}{2!} \left(\begin{array}{cc}
Q_{\alpha\gamma} & 0 \\
0 & Q_{\alpha\gamma}
\end{array} \right) + \frac{s^3}{3!} \left(\begin{array}{cc}
Q_{\alpha\gamma} & 0 \\
0 & Q_{\alpha\gamma}
\end{array} \right) + \cdots \\
\frac{s^4}{4!} \left(\begin{array}{cc}
Q_{\alpha\gamma} & 0 \\
0 & Q_{\alpha\gamma}^2
\end{array} \right) + \frac{s^5}{5!} \left(\begin{array}{cc}
0 & Q_{\alpha\gamma}^2 \\
Q_{\alpha\gamma} & 0
\end{array} \right) + \frac{s^6}{6!} \left(\begin{array}{cc}
Q_{\alpha\gamma} & 0 \\
0 & Q_{\alpha\gamma}^3
\end{array} \right) + \cdots
\end{align*}
\]

\(h_{\alpha\beta} \) corresponds to the top left hand quadrant:

\[
h_{\alpha\gamma}(s) = \delta_{\alpha\gamma} + \frac{s^2}{2!}Q_{\alpha\gamma} + \frac{s^4}{4!}(Q^2)_{\alpha\gamma} + \frac{s^6}{6!}(Q^3)_{\alpha\gamma} + \cdots + \frac{s^{2r}}{(2r)!}(Q^r)_{\alpha\gamma} + \cdots
\]

(5.124)

where we define \((Q^r)_{\alpha\gamma} := \delta_{\alpha\gamma} \). And \(g_{\alpha\beta} \) corresponds to the top right hand quadrant:

\[
g_{\alpha\gamma}(s) = s\delta_{\alpha\gamma} + \frac{s^3}{3!}Q_{\alpha\gamma} + \frac{s^5}{5!}(Q^2)_{\alpha\gamma} + \frac{s^7}{7!}(Q^3)_{\alpha\gamma} + \cdots + \frac{s^{2r+1}}{(2r+1)!}(Q^r)_{\alpha\gamma} + \cdots
\]

(5.125)

Consider
\[|h_{\alpha\gamma}(s)| \leq \delta_{\alpha\gamma} + \frac{s^2}{2!}|Q_{\alpha\gamma}| + \frac{s^4}{4!}|(Q^2)_{\alpha\gamma}| + \frac{s^6}{6!}|(Q^3)_{\alpha\gamma}| + \cdots \quad (5.126) \]

Define \(q \) as

\[q := \{\max|Q_{\alpha\gamma}| \text{ for all } \alpha, \gamma\} \]

and define the matrix \(D \) to be the \(3 \times 3 \) matrix with all entries equal to 1. Then obviously

\[|(Q^n)_{\alpha\gamma}| \leq (qD)^n = 3^{n-1}q^n D \]

we then have

\[|h_{\alpha\gamma}(s)| \leq \delta_{\alpha\gamma} + \frac{s^2}{2!}qD_{\alpha\gamma} + \frac{s^4}{4!}3q^2D_{\alpha\gamma} + \frac{s^6}{6!}3^2q^3D_{\alpha\gamma} + \cdots + \frac{s^{2r}}{(2r)!}3^{r-1}q^rD_{\alpha\gamma} + \cdots \quad (5.127) \]

We are now in a position to apply the ratio test

\[\lim_{n \to \infty} \left| \frac{s^{2(n+1)+3}q^{n+1}}{(2(n+2))!} \cdot \frac{(2n)!}{s^{2n+3}q^n} \right| = \lim_{n \to \infty} \left| \frac{s^2 \cdot 3q}{(2n+2)(2n+1)} \right| = 0. \quad (5.128) \]

Therefore the series on the right side of the inequality (5.127) converges and hence the series expansion for \(|h_{\alpha\beta}(s)| \) converges absolutely and is \(|h_{\alpha\beta}(s)| \) is bounded. Similarly for \(|g_{\alpha\beta}(s)| \) we write

\[|g_{\alpha\gamma}(s)| \leq s^3\delta_{\alpha\gamma} + \frac{s^3}{3!}qD_{\alpha\gamma} + \frac{s^5}{3!}3q^2D_{\alpha\gamma} + \frac{s^7}{7!}3^2q^3D_{\alpha\gamma} + \cdots + \frac{s^{2r+1}}{(2r+1)!}3^{r-1}q^rD_{\alpha\gamma} + \cdots \quad (5.129) \]

We apply the ratio test

\[\lim_{n \to \infty} \left| \frac{s^{2(n+1)+3}q^{n+1}}{(2(n+1))!} \cdot \frac{(2n+1)!}{s^{2n+3}q^n} \right| = \lim_{n \to \infty} \left| \frac{s^2 \cdot 3q}{(2n+3)(2n+2)} \right| = 0. \quad (5.130) \]

Therefore the functions \(|g_{\alpha\beta}(s)| \) and \(|h_{\alpha\beta}(s)| \) are bounded. Now applying the conditions of the lemma, namely that \(A_{\alpha\beta}(0) = \epsilon_A \delta_{\alpha\beta} \) and \(\max|A'_{\alpha\beta}(0)| = 1 \), to (5.122) we deduce:

\[|A_{\alpha\beta}(s)| \leq \epsilon_A|h_{\alpha\beta}(s)| + |g_{\alpha\gamma}| \frac{d}{ds}A_{\gamma\beta}(0) \]

\[\leq \epsilon_A|h_{\alpha\beta}(s)| + |g_{\alpha\gamma}| \frac{d}{ds}A_{\gamma\beta}(0) \]

\[\leq \epsilon|h_{\alpha\beta}(s)| + |g_{\alpha\gamma}(s)| \]

\[566 \]
Thus we see that \(A_{\alpha\beta}(s) \) on \([0, s^*]\) is bounded by a constant which is independent of \(A \). Now, as \(R_{4\alpha4\gamma} \) is bounded on \([0, s^*]\), by (5.118), \(A''_{\alpha\beta}(s) \) is also bounded on \([0, s^*]\). Hence,

\[
|A''_{\alpha\beta}(s_{\alpha\beta})| \leq C_{s^*},
\]

where \(C_{s^*} \) is independent of the choice of \(A(0) \) and \(A'(0) \).

Next, \(A'_{\alpha\beta}(0) \) is symmetric. Let \(\lambda_1, \lambda_2, \) and \(\lambda_3 \) be the eigenvalues of \(A'_{\alpha\beta} \) with \(\lambda_1 \leq \lambda_2 \leq \lambda_3 \). We claim that \(\lambda_1 \leq -\frac{1}{2} \). The proof of this is based on a result of constrained minima: the eigenvectors can always be normalised to unity, therefore we need only consider \(x_\alpha \) such that \(x_1^2 + x_2^2 + x_3^2 = 1 \) (this is the constraint); the quantity \(A'_\alpha x_\alpha x_\beta \) will obtain a minimum if and only if

\[
\frac{\partial}{\partial x_\alpha} A'_{\alpha\beta} x_\alpha x_\beta = \lambda \frac{\partial}{\partial x_\alpha} (x_1^2 + x_2^2 + x_3^2)
\]

or, taking into account that \(A'_{\alpha\beta} \) is symmetric, if and only if

\[
A'_{\alpha\beta} x_\beta = \lambda x_\alpha
\]

i.e., minimisation occurs when \(x_\beta \) an eigenvector of \(A'_{\alpha\beta} \). The corresponding value \(A'_{\alpha\beta} x_\alpha x_\beta \) is equal to the eigenvalue \(\lambda_1 \), due to normalisation. Therefore

\[
\lambda_1 = \min\{x_1^2 + x_2^2 + x_3^2\} A'_{\alpha\beta}(0) x_\alpha x_\beta.
\]

Case 1. \(|A'_{\alpha\alpha}(0)| = 1 \) for some \(\alpha \) (no summation over \(\alpha \)). Without loss of generality, we can assume that \(\alpha = 1 \). For the case where \(A'_{11}(0) = +1, A'_{12}(0) + A'_{22}(0) + A'_{33}(0) \leq 0 \) implies \(A'_{22}(0) + A'_{33}(0) \leq -1 \). Which means that either \(A'_{22}(0) \) or \(A'_{33}(0) \) is less than or equal to \(-\frac{1}{2}\). By taking \(x = (1, 0, 0) \) we have \(\lambda_1 \leq A'_{11}(0) \), by taking \(x = (0, 1, 0) \) we have \(\lambda_1 \leq A'_{22}(0) \), and by taking \(x = (0, 0, 1) \) we have \(\lambda_1 \leq A'_{33}(0) \). As a result we have \(\lambda_1 \leq -\frac{1}{2} \). For \(A'_{11}(0) = -1 \), we have \(A'_{22}(0) + A'_{33}(0) \leq +1 \), implying \(\lambda_1 \leq A'_{11}(0) = -1 \).

Case 2. \(|A'_{\alpha\beta}(0)| = 1 \) for some \(\alpha \neq \beta \). Without loss of generality, we assume \(\alpha = 1 \) and \(\beta = 2 \). For \(A'_{12}(0) = +1 \) we let \(x = (1/\sqrt{2}, -1/\sqrt{2}, 0) \). We have
\[
\lambda_1 \leq \left(\frac{1}{\sqrt{2}}, -1, 0 \right) \begin{pmatrix}
A'_{11}(0) & A'_{12}(0) \\
A'_{12}(0) & A'_{22}(0)
\end{pmatrix} \begin{pmatrix}
\frac{1}{\sqrt{2}} \\
0
\end{pmatrix}
\]

\[
= \frac{1}{2}(1, -1, 0) \begin{pmatrix}
A'_{11}(0) - A'_{12}(0) \\
A'_{12}(0) - A'_{22}(0)
\end{pmatrix}
\]

\[
= \frac{1}{2}(A'_{11}(0) - 2A'_{12}(0) + A'_{22}(0))
\]

\[
= \frac{1}{2}(A'_{11}(0) - 2 + A'_{22}(0)).
\]

(5.133)

If \(A'_{11}(0) + A'_{22}(0) \leq 1\), then \(\lambda_1 \leq -\frac{1}{2}\). If \(A'_{11}(0) + A'_{22}(0) \geq 1\), then \(A'_{33}(0) \leq -1\) (by \(Tr(A'(0)) \leq 0\)). So \(\lambda_1\) is still less than or equal to -1. For the case \(A'_{12}(0) = -1\), we take \(x = (1/\sqrt{2}, 1/\sqrt{2}, 0)\) in which case

\[
\lambda_1 \leq \left(\frac{1}{\sqrt{2}}, 1/\sqrt{2}, 0 \right) \begin{pmatrix}
A'_{11}(0) & A'_{12}(0) \\
A'_{12}(0) & A'_{22}(0)
\end{pmatrix} \begin{pmatrix}
\frac{1}{\sqrt{2}} \\
0
\end{pmatrix}
\]

\[
= \frac{1}{2}(1, 1, 0) \begin{pmatrix}
A'_{11}(0) + A'_{12}(0) \\
A'_{12}(0) + A'_{22}(0)
\end{pmatrix}
\]

\[
= \frac{1}{2}(A'_{11}(0) + 2A'_{12}(0) + A'_{22}(0))
\]

\[
= \frac{1}{2}(A'_{11}(0) - 2 + A'_{22}(0)).
\]

(5.134)

Proceeding as before, we also find \(\lambda_1 \leq -1\). The most definitive statement we can conclude from all of the above is that

\[
\lambda_{\text{min}} \leq -\frac{1}{2}
\]

(5.135)

which is what we set out to prove.

By the above,

\[
|A'_{\alpha\beta}(0) + \frac{s}{2}A''_{\alpha\beta}(s_{\alpha\beta}) - A'_{\alpha\beta}(0)| \leq \frac{s}{2}C_s^*.
\]

(5.136)

This implies the deviation from \(A'_{\alpha\beta}(0)\) can be made arbitrarily small by suitable choice of \(s\). Now, the eigenvalues of a 3 by 3 matrix are roots of a cubic equation which has an explicit formula to solve, the minimum eigenvalue is a continuous function of its entries. Thus it is always possible, by choosing \(s_0\) small enough, so that the new \(\lambda_1\) is less than or equal to say \(-\frac{1}{4}\).
In actual fact this choice can be made independent of \(A'_{\alpha\beta}(0) \). We now turn to the technical part of the proof.

We denote by \(A \) the space given in the lemma, namely

\[
A := \{ A_{\alpha\beta}(0) = \sigma A_{\delta\alpha\beta}; A'_{\alpha\beta}(0) = A'_{\beta\alpha}(0); \max |A'_{\alpha\beta}(0)| = 1; \tr(A'_{\alpha\beta}(0)) \leq 0 \}. \tag{5.137}
\]

This is compact by the Heine-Borel theorem (a subset of \(\mathbb{R} \) that is closed and bounded is compact). Then define the space \(\tilde{A} \) by

\[
\tilde{A} := [0, s] \times A \tag{5.138}
\]

which is also compact. Define the function \(h \) by

\[
h(s; A_{\alpha\beta}(0), A'_{\alpha\beta}(0)) := A'_{\alpha\beta}(0) + \frac{s}{2} A''_{\alpha\beta}(s_{\alpha\beta}) \tag{5.139}
\]

\[
h : \tilde{A} \to B.
\]

And by (5.122) we have

\[
h(s; A_{\alpha\beta}(0), A'_{\alpha\beta}(0)) := \sigma A h_{\alpha\beta}(s) + g_{\alpha\gamma}(s) A'_{\alpha\beta}(0) - \sigma A \delta_{\alpha\beta} \tag{5.140}
\]

from which we see that \(h \) is a continuous function over \(\tilde{A} \) implying that \(B \) is compact and bounded. Now the minimum eigenvalue \(\lambda \) is a continuous function over \(B \)

\[
\lambda : B \to C \subset \mathbb{R},
\]

implying it is bounded. Moreover, as it is a continuous function over a compact space it is also uniformly continuous, that is, given any \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that if \(p, q \in B \) and

\[
d_B(p, q) < \delta
\]

then

\[
|\lambda(p) - \lambda(q)| < \epsilon.
\]

We pick \(p \) to correspond to \(h(s = 0; A'_{\alpha\beta}(0)) \in B \) and pick \(\epsilon \) to be equal to 1/4, then we can find a \(\delta \).
\[|h(s = 0; A'_{\alpha\beta}(0)) - h(s; A'_{\alpha\beta}(0))| \]
\[= |A'_{\alpha\beta}(0) + \frac{s}{2}A''_{\alpha\beta}(s_{\alpha\beta}) - A'_{\alpha\beta}(0)| < \delta, \]
\text{(5.141)}

such that

\[|\lambda(A'_{\alpha\beta}(0) + \frac{s}{2}A''_{\alpha\beta}(s_{\alpha\beta})) - \lambda(A'_{\alpha\beta}(0))| < 1/4. \]
\text{(5.142)}

From reference to (5.136), we see this \(\delta \) can be achieved by taking \(s \) to satisfy

\[\frac{sC_{s^*}}{2} < \delta \]

or

\[s < \frac{\delta}{2C_{s^*}}. \]

Let \(s_0 \) denote the value of \(s \) that corresponds to \(\epsilon = 1/4 \). The choice \(s_0 \) is independent of \(A_{\alpha\beta}(0) \) and \(A'_{\alpha\beta}(0) \) and follows from the fact that the minimum eigenvalue is a continuous function over a compact space and as such is uniformly continuous.

Now we turn to the full solution with \(s = s_0 \),

\[A_{\alpha\beta}(s_0) = \sigma_A \delta_{\alpha\beta} + s_0(A'_{\alpha\beta}(0) + \frac{s_0}{2}A_{\alpha\beta}). \]
\text{(5.143)}

Note that what we have established is that the minimum eigenvalue of the matrix \(A'_{\alpha\beta}(0) + \frac{s_0}{2}A_{\alpha\beta}(s_{\alpha\beta}) \) is \(\leq -(1/4) \). Actually what we really need is the corresponding result for this matrix multiplied by \(s_0 > 0 \), namely the matrix \(s_0(A'_{\alpha\beta}(0) + \frac{s_0}{2}a_{\alpha\beta}) \). It is easy to see then for this matrix the minimum eigenvalue is \(\leq -(s_0/4) \).

Now consider (5.143). Say we wanted to find the eigenvalues of a matrix \(M \), we would solve the equation

\[det|M - \lambda| = 0. \]
\text{(5.144)}

What if we then added \(\sigma_A I \) to \(M \), what would be the new eigenvalues? We would have to solve

\[det|(M + \sigma_A I) - \lambda_{\text{new}}I| = 0 \]
which is the same as solving

\[\text{det}[M - (\lambda_{\text{new}} - \sigma_A I)] = 0 \quad (5.145) \]

Comparison of (5.144) with (5.145) implies

\[\lambda_{\text{new}} = \lambda + \sigma_A. \]

Obviously, by adding the constant \(\sigma_A \) times the unit matrix all this does is shift the value of the eigenvalues of \(M \) by the positive number \(\sigma_A \). By choosing \(\sigma \) small enough we can ensure that the minimum eigenvalue is less than or equal to say \(-\frac{s_0}{8}\) (namely, with the choice \(\sigma = s_0/8 \)).

We have now established that the full solution for \(s = s_0 \) has a minimum eigenvalue \(\leq -(s_0/8) \) provided we take \(\sigma \) small enough. Now, all the eigenvalues of \(A_{\alpha\beta}(0) \) are \(\sigma_A > 0 \), but we have shown that there is a negative eigenvalue of \(A_{\alpha\beta}(s_0) \). By the mean value theorem, there exists a zero eigenvalue of \(A_{\alpha\beta}(s_1) \) for some \(s_1 \in [0, s_0] \). So \(\text{det}(A)(s_1) = 0 \).

\[\square \]

Proposition 5.1.53 If the strong energy condition holds and the generality condition holds at a point then there is a pair of conjugate points along any causal geodesic provided that the geodesic can be extended far enough.

Proof: We break the proof into four parts

a) Prove there is a conjugate point to the future in the case of non-positive expansion, \(\theta \leq 0 \).

b) The map \(\eta \) that takes you from the initial condition, using the Jacobi equation, to the first focal point is a continuous function.

c) For \(S = \{ b \text{ is a 3 by 3 symmetric matrix with} \text{tr}(b) \leq 0 \} \). We prove that \(\eta(S) \) is bounded.

d) Take a future focal point and prove the existence of a past focal point.

Let \(\gamma \) be a time-like geodesic.

A solution for a Jacobi field \(A_{\alpha\beta}(s) \) (satisfying (5.70)) along \(\gamma(s) \) is uniquely determined by the value of \(A_{\alpha\beta} \) and \(dA_{\alpha\beta}/ds \) at \(p \). Consider the space of solutions for which

\[A_{\alpha\beta}|_p = \delta_{\alpha\beta} \quad \text{and} \quad \frac{d}{ds}A_{\alpha\beta}|_p \quad \text{is a symmetric matrix with} \text{tr} \theta|_p \leq 0. \quad (5.146) \]

We specify

\[J_\alpha(s) = \sum_{\alpha=1} A_{\alpha\beta}(s)e_\beta(0). \quad (5.147) \]
This implies

\[\frac{d^2}{ds^2} \sum_{\beta=1}^{d} A_{\alpha\beta}(s)e_\beta(0) = -R_{\alpha4\gamma4} \sum_{\beta=1}^{d} A_{\alpha\beta}(s)e_\beta(0) \]

(5.148)

or

\[\frac{d^2}{ds^2} A_{\alpha\beta} = -R_{\alpha4\gamma4} A_{\alpha\beta} \]

(5.149)

along \(\gamma \).

We let \(S = \{ \text{b is a 3 by 3 symmetric matrix with} \quad \text{tr}(b) \leq 0 \} \). we claim for any \(b \in S \), if \(A_{\alpha\beta}(0) = I_{3\times3}, A_{\alpha\beta}'(0) = b \)

Proof a):

First we prove that for all such solutions there is a finite interval on \(\gamma(s) \) from the point \(\gamma(s_1) \) where the matrix \(A_{\alpha\beta}(s) \) first becomes singular.

First, for each solution in \(P \) there will be some \(s_3 > s_1 \) for which \(A_{\alpha\beta}(s_3) \) is singular, since either

\[\omega_{\alpha\beta}(s) = -\frac{1}{2}(A_{\gamma\alpha}^{-1}(s) \frac{d}{ds} A_{\beta\gamma}(s) - A_{\gamma\alpha}^{-1}(s) \frac{d}{ds} A_{\alpha\gamma}(s)) \]

So for \(\omega_{\alpha\beta}(0) \) we find

\[\omega_{\alpha\beta}(0) = -\frac{1}{2}(A_{\gamma\alpha}^{-1}(0) A'_{\beta\gamma}(0) - A_{\gamma\alpha}^{-1}(0) A'_{\alpha\gamma}(0)) \]

\[= -\frac{1}{2}(\delta_{\gamma\alpha} A'_{\beta\gamma}(0) - \delta_{\gamma\beta} A'_{\alpha\gamma}(0)) \]

\[= -\frac{1}{2}(A'_{\beta\alpha}(0) - A'_{\alpha\beta}(0)) \]

\[= 0. \]

By

\[\frac{d}{ds}(A_{\gamma\alpha}(s)\omega_{\gamma\delta}(s)A_{\delta\beta}(s)) = 0 \]

\(\omega_{\alpha\beta}(s) \) will be zero everywhere along \(\gamma(s) \) where \(A_{\alpha\beta}(s) \) is non-singular.

(i) \(\theta|_p < 0 \), in which case it follows from the focussing theorem, or

For \(tr(b) < 0 \), we have at the origin
\[\theta(0) = tr(A'_\alpha \beta(0)A^{-1}_\alpha \beta(0)) = tr(b) < 0. \]

So by the focusing theorem (proposition 5.1.43) there will be a point where \(det(A(s)) = 0 \) for some \(s > 0 \). For \(tr(b) = 0 \) we have \(\theta(0) = 0. \)

(ii) \(tr(b) = 0 \) or \(\theta|_{p} = 0 \): First suppose that

\[R_{ab} \gamma^a(0)\gamma^b(0) + \sigma_{ab}\sigma^{ab} = 0 \]

as \(\sigma_{ab}\sigma^{ab} \) is nonnegative this implies,

\[R_{ab} \gamma^a(0)\gamma^b(0) = 0 \quad \text{and} \quad \sigma_{ab}\sigma^{ab} = 0 \]

By the Raychaudhuri equation for shear (5.34) reduces to

\[\frac{d\sigma_{ab}}{ds} = R_{cbad}V^cV^d \quad (5.150) \]

at \(\gamma(0) \). Since we have a non-zero tidal force at \(\gamma(0) \) this implies

\[\frac{d\sigma_{ab}}{ds} \neq 0 \]

at \(\gamma(0) \), which implies

\[\sigma_{ab}\sigma^{ab} > 0 \]

on an open segment of \(\gamma \) whose closure includes \(\gamma(0) \). By the Raychaudhuri equation

\[\frac{d}{ds}\theta = -R_{ab}V^aV^b - \sigma_{cd}\sigma^{cd} - \frac{1}{3}\theta^2 \quad (5.151) \]

positive \(\sigma_{cd}\sigma^{cd}, (R_{ab}V^aV^b \geq 0 \text{ for } s > 0) \), will cause \(\theta \) to become negative for \(s > 0 \). Again we will have \(det(A(s)) = 0 \) for some \(s > 0 \). So the Weyl tensor produces convergence indirectly by inducing shear.

Now suppose that

\[R_{ab} \gamma^a(0)\gamma^b(0) + \sigma_{ab}\sigma^{ab} \neq 0 \]

then by the Raychaudhuri equation we have \(det(A(s)) = 0 \) for some \(s > 0 \).
Proof b):

Let $S = \{b \text{ is a 3 by 3 symmetric matrix with } tr(b) \leq 0 \}$. Let $\eta : S \to [0, +\infty)$ such that $\eta(b) = \min\{s \in [0, +\infty] : det(A(s)) = 0 \text{ with } A_{\alpha\beta}(0) = I_{3\times3}, A'_{\alpha\beta}(0) = b \text{ and } \frac{d^2}{ds^2}A_{\alpha\beta} + A_{\alpha\gamma}R_{\gamma\alpha\beta} = 0 \}$. We claim η is continuous.

Suppose the map is not continuous at some point $b \in S$. Then there exists a $\epsilon > 0$ such that for all $n \in \mathbb{N}$, there exists some $b_n \in S$ with $\max|\eta(b_n)_{\alpha\beta} - b_{\alpha\beta}| < \frac{1}{n}$ but

$$|\eta(b_n) - \eta(b)| < \epsilon.$$ \hspace{1cm} (5.152)

Note condition (5.152) is equivalent to

$$\eta(b_n) \notin (\eta(b) - \epsilon, \eta(b) + \epsilon).$$ \hspace{1cm} (5.153)

Case i) $tr(b) < 0$ at $\gamma(0)$.

We have that b_n is assumed to converge to b. Now even though we may have $tr(b_n) = 0$ for some n, the series $\{tr(b_n)\}$ cannot converge to zero as $tr(b)$ is assumed to be less than zero. Then for some $n > N \in \mathbb{N}$ we will have that

$$tr(b_n) < \frac{tr(b)}{2}.$$

(see fig 5.63). Recall that the focusing theorem maintains if $\theta(s) < 0$ then θ will tend to $-\infty$ within $\Delta s \leq 3/|\theta(s)|$. Hence $\eta(b_n) \in [0, -6/tr(b)]$. As $[0, -6/tr(b)]$ is a compact set, $\eta(b_n)$ converges to $\xi \in [0, -6/tr(b)]$, where, by assumption of discontinuity, $\xi \neq \eta(b)$.

As

$$(A_{b_n})_{\alpha\beta}(s) = h_{\alpha\beta}(s) + g_{\alpha\gamma}(s)(b_n)_{\gamma\beta}$$
is obviously continuous with respect to the components of \(b_n \), we have

\[
A_{b_n}(s) \to A_b(s). \tag{5.154}
\]
as \(b_n \to b \). Indeed, \(\eta(b_n) \) converging to \(\xi \) means that

\[
|A_{b_n}(\eta(b_n)) - A_b(\xi)| = |A_{b_n}(\eta(b_n)) - A_{b_n}(\xi) + A_{b_n}(\xi) - A_b(\xi)| \\
\leq |A_{b_n}(\eta(b_n)) - A_{b_n}(\xi)| + |A_{b_n}(\xi) - A_b(\xi)| \tag{5.155}
\]
By the continuity of \(A_{b_n}(s) \) with respect to \(s \) and (5.154)

\[
A_{b_n}(\eta(b_n)) \to A_b(\xi)
\]
As the determinant is a continuous function of the matrix elements and

\[
det(A_{b_n}(\eta(b_n))) = 0 \quad \text{for all} \ n,
\]
we have

\[
det(A_b(\xi)) = 0. \tag{5.156}
\]
If \(\xi < \eta(b) \), then by (5.156) there is a contradiction since \(\eta(b) \) is the first point where \(\det(A_b(s)) = 0 \). If \(\xi > \eta(b) \), then there is a sequence of expansions \(\theta(h_n) \) associated to \(b_n \) such that \(\theta(h_n) \) tends to \(-\infty \) when \(h_n \) tends to \(\eta(b) \) from the ‘left’; \(\{h_n\} \) is a sequence of values of \(s \) tending to \(\eta(b) \) and \(\theta(h_n) \) is the expansion corresponding to the solution with initial condition \(b_n \) with the sequence \(\{h_n\} \) chosen such that \(\theta(h_n) \) is finite for finite \(n \). Since \(h_n \) converges to \(\eta(b) \), for \(n > N \in \mathbb{N} \) we have

\[
h_n \in (\eta(b) - \epsilon, \eta(b)).
\]
Again by the focussing theorem if \(\theta(s) < 0 \) then \(\theta \) will tend to \(-\infty \) within \(\Delta s \leq 3/|\theta(s)| \); for large \(n \) (and with \(n > N \)) the expansion \(\theta \) corresponding to \(b_n \) is so negative that the first point where \(\det(A_{b_n}) = 0 \), i.e. \(\eta(b_n) \), is within the distance

\[
\Delta s \leq \epsilon.
\]
This is achieved for \(|\theta(h_n)| \) satisfying

\[
|\theta(h_n)| \geq 3/\epsilon.
\]

575
Therefore $\eta(b_n)$ lies inside the open interval $(\eta(b) - \epsilon, \eta(b) + \epsilon)$ in contradiction to the assumption (5.153).

Case ii) $tr(b) = 0$ at $\gamma(0)$. By the above argument, we have $tr(b) < 0$ on an open interval whose closure contains $\gamma(0)$. We apply the same argument as in case i) and find a contradiction.

Proof c):

We prove that $\eta(S)$ is bounded, i.e. $\eta(S) \subseteq [0, s_5]$. First let $C > 0$ be a constant. Define

$$S_C := \{ b \in S : \max|b_{\alpha\beta}| > C \}.$$

By lemma 5.1.52, $\eta(S_C)$ is bounded. The set $S - S_C$ corresponds to the subspace of S consisting of all matrices whose component’s absolute values are less than or equal to C, i.e.,

$$S - S_C = \{ b \in S : \max|b_{\alpha\beta}| \leq C \}.$$

Being closed and bounded it is compact. As η is continuous $\eta(S - S_C)$ will be bounded by proposition 5.1.49.

This means that there is some $s_5 > s_1$ such that $\eta(S)$ is contained in the segment from $\gamma(s_1)$ to $\gamma(s_5)$.

$$\theta_p < 0$$

Figure 5.64: $\eta(S)$ is contained in the bounded segment from $\gamma(s_1)$ to $\gamma(s_5)$.

Proof d):

Then we consider a point r beyond the this interval. Suppose that there is no conjugate to $\gamma(s_5)$ along $\gamma[0, s_5]$. Otherwise, the proposition is done. We will see that it follows that there must be a point say q before $\gamma(s_1)$ conjugate to r. First we need to prove there is a Jacobi field J along γ such that $J_\alpha(0) = e_\alpha$ and $J_\alpha(s_5) = 0$. Let us write the general solution of the equation (5.118) in terms of the boundary conditions given at the point $r = \gamma(s_5)$,

$$A_{\alpha\beta}(s) = h_{\alpha\gamma}(s - s_5)A_{\gamma\beta}(s_5) + g_{\alpha\gamma}(s - s_5)\frac{d}{ds}A_{\gamma\beta}(s_5)$$

(5.157)

At $s = 0$, this is

576
\[
A_{\alpha\beta}(0) = h_{\alpha\gamma}(-s_5)A_{\gamma\beta}(s_5) + g_{\alpha\gamma}(-s_5)\frac{d}{ds}A_{\gamma\beta}(s_5) \tag{5.158}
\]

We choose

\[
A_{\gamma\beta}(s_5) = 0, \tag{5.159}
\]

to make \(J_\alpha(s_5) = 0\). Then we have

\[
A_{\alpha\beta}(0) = g_{\alpha\gamma}(-s_5)\frac{d}{ds}A_{\gamma\beta}(s_5). \tag{5.160}
\]

We consider the solutions for which \(\frac{d}{ds}A_{\gamma\beta}(s_5)\) is non-singular. As we are taking \(A_{\alpha\beta}(0)\) to be non-singular, by \(detA = detg \frac{d}{ds}A_{\gamma\beta}(s_5)\), \(g_{\alpha\gamma}(-s_5)\) is also non-singular. Let us choose

\[
\frac{d}{ds}A_{\gamma\beta}(s_5) = (g^{-1}(-s_5))_{\gamma\beta} \tag{5.161}
\]

so that

\[
A_{\alpha\beta}(0) = \delta_{\alpha\beta}. \tag{5.162}
\]

By this choice \(\frac{d}{ds}A_{\gamma\beta}(s_5)\) is symmetric.

The corresponding Jacobi field will have zero vorticity: in general we have

\[
A_{\gamma\alpha}\omega_{\gamma\delta}A_{\delta\beta} = \frac{1}{2} \left(A_{\gamma\alpha} \frac{d}{ds}A_{\gamma\beta} - A_{\gamma\beta} \frac{d}{ds}A_{\gamma\alpha} \right)
\]

the Jacobi field vanishes at \(\gamma(s_5)\) so

\[
A_{\gamma\alpha}\omega_{\gamma\delta}A_{\delta\beta} = 0
\]

at \(s = s_5\). As \(A_{\alpha\beta}\) has an inverse on \(\gamma[0,s_5]\). Therefore \(\omega_{\alpha\beta} = 0\) on \(\gamma[0,s_5]\). From this we see that

\[
0 = \omega_{\alpha\beta}(0) = -\frac{1}{2}(A^{-1}_{\gamma\alpha}(0)A'_{\beta\gamma}(0) - A^{-1}_{\gamma\beta}(0)A'_{\alpha\gamma}(0)) \tag{5.163}
\]

this implies
\[0 = A^{-1}_{\gamma\alpha}(0)A'_{\beta\gamma}(0) - A^{-1}_{\gamma\beta}(0)A'_\alpha(0) \]
\[= \delta_{\gamma\alpha}A'_{\beta\gamma}(0) - \delta_{\gamma\beta}A'_\alpha(0) \]
\[= A'_{\beta\alpha}(0) - A'_{\alpha\beta}(0) \quad (5.164) \]

so \(A'_{\alpha\beta}(0) \) is symmetric. We have now established a family of Jacobi fields that vanish at \(\gamma(s_5) \) and correspond to \(A'_{\alpha\beta}(0) \) symmetric, \(A_{\alpha\beta}(0) = \delta_{\alpha\beta} \) and zero vorticity.

From this we see that if there is no point conjugate to \(\gamma(s_5) \) between \(\gamma(s_5) \) and \(\gamma(0) \) the Jacobi fields which are zero at \(\gamma(s_5) \) must have expansion which is positive at \(\gamma(0) \) otherwise they would correspond to families of Jacobi fields with zero vorticity which have non-positive expansion at \(\gamma(0) \). It follows from the (time-reversed) focusing theorem that there must be a point say \(q \) before \(\gamma(s_1) \) conjugate to \(r \).

Figure 5.65: The Jacobi fields which are zero at \(r \) must have expansion \(\theta \) which is positive at \(p \) otherwise \(r \) would lie in the bounded interval from \(\gamma(s_1) \) to \(\gamma(s_5) \).

Figure 5.66: With \(R_{abcd}V^bV^c \neq 0 \). Non-positive expansion at \(p (\theta > 0) \) implies there is a point \(q \) conjugate to \(r \), in the past of \(p \). This is just the time reversed version of the focusing theorem.
Theorem for null geodesics from a point

In the appendix J on horizons we introduced adapted basis to describe the geometry of congruences of null geodesics.

The equation

\[
\frac{d^2}{dv^2}Z^m = -R_{m4n4}Z^n \quad (m, n = 1, 2) \tag{5.165}
\]

along a null geodesic \(\gamma(v)\), a Jacobi field along \(\gamma(v)\). The components \(Z^m\) are taken to be the components with respect to the basis \(E_1\) and \(E_2\), of a vector in the space \(S_q\) at each point \(q\). The point \(p\) is conjugate to \(q\) along the null geodesic \(\gamma(v)\) if there is a Jacobi field along \(\gamma(v)\), not identically zero, which vanishes at \(q\) and \(p\).

\[
Z^m(v) = \hat{A}_{mn} \frac{d}{dv} Z^n|_q. \tag{5.166}
\]

The null expansion scalar of \(S\) with respect to \(K\) is the scalar field \(\hat{\theta}\) on \(S\) has a natural geometric interpretation. Let \(\Sigma\) be the intersection of \(S\) with hypersurface in \(M\) which is tranverse to \(K\) near \(p \in S\); \(\Sigma\) will be a co-dimensional two spacelike submanifold of \(M\), along which \(K\) is orthogonal.

\[
\hat{\theta} = (\det \hat{A})^{-1} \frac{d}{dv}(\det \hat{A}) \tag{5.167}
\]

becomes infinite at \(p\). We have the null version of the focussing theorem:

Proposition 5.1.54 If \(R_{ab}K^aK^b \geq 0\) and if at some point \(\gamma(v_1)\) the expansion \(\hat{\theta}\) has negative value \(\hat{\theta}_1 < 0\), then there will be a point conjugate to \(q\) along \(\gamma(v)\) between \(\gamma(v_1)\) and \(\gamma(v_1 + (2/ - \hat{\theta}_1))\) provided that \(\gamma(v)\) can be extended that far.
The expansion $\hat{\theta}$ of the matrix \hat{A}_{mn} obeys (5.168):

$$\frac{d}{dv}\hat{\theta} = -R_{ab}K^aK^b - 2\hat{\sigma}^2 - \frac{1}{2}\hat{\theta}^2,$$

and so the proof proceeds as before.

\[\square\]

Proposition 5.1.55 If $R_{ab}V^aV^b \geq 0$ and if at some point $p = \gamma(v_1) K^dK^dK_{[a}R_{b]cdefV_f}$ is non-zero, there will be values v_0 and v_2 such that $q = \gamma(v_0)$ and $r = \gamma(v_2)$ will be conjugate along γ, providing that $\gamma(v)$ can be extended to these values.

If $K_{[a}R_{b]cdefK_f}K^cK^d \neq 0$ is non-zero then so is R_{m4n4}. The proof is then similar to that of proposition 5.1.55.

\[\square\]

Theorem for null geodesics orthogonal to a spacelike two-surface

Proposition 5.1.56

\[\square\]

5.2 Black Holes

It predicts that gravitational collapse, both at the Big Bang and inside black holes, brings about spacetime singularities as at which the theory breaks down.

Even if one perturbs around the Schwarzschild solution, specific values of expansions of null congruences may change, but for sufficiently small perturbations they will remain negative if they are negative for the unperturbed solution.

The Strong Energy Condition

$$T_{00} + \sum_i T_{i0} \geq 0$$

is the most important energy condition (Gravity is attractive)
5.2.1 Collapse of a Star

In Newtonian gravity the force between particles goes as $1/r^2$. While the matter of the star is widely spaced the gravitational force between particles is weak. The gravitaional force increases as the particles come closer together. This increases the acceleration of the collapse and if nothing intervenes matter will collapse to a point. A star which has a high temperature has high pressure which balances the gravitational force and stops the collapse.

The gravity compresses the mater against the degeneracy pressure. If the neutron star is too large, the gravitational forces overwhelm the pressure gradients and collapse cannot be halted. The neutron star continues to shrink until it finally becomes a black hole.

Using the Newtonian order of magnitude argument, we note that for a star with mass M and radius r_0, the gravitational unit volume is of the order $M/r_0^2 n m_n$, where $n m_n \approx M/r_0^3$ is the mass density.

The gravitational force is balanced by a pressure gradient of order P/r_0, P being the average pressure in the star. Thus the pressure P can be expressed as:

$$P = \frac{M^2}{r_0^4} \approx M^{2/3} n^{4/3} m_N^{4/3}$$ (5.169)

When th density is sufficienlt low the main contribution to the pressure is from the degneracy
of non-relativistic electrons, hence using (4.3.4) we have

$$P = \hbar^2 n^{5/3} m_e^{-1}$$ \hspace{1cm} (5.170)

Equating the two expressions for the pressure we obtain

$$M^{2/3} n^{4/3} m_N^{4/3} = \hbar^2 n^{5/3} m_e^{-1}$$ \hspace{1cm} (5.171)

which gives the value of the number density n as

$$n = M^2 m_n^4 m_e^3 \hbar^{-6}.$$ \hspace{1cm} (5.172)

The above value of n is based on the assumption that the self-gravity of the star is coming into play, this will be valid as long as this n is greater than the value of n given by (5) where self-gravity has no influence on the star as it is too small; and also this n must be less than $m_e^3 \hbar^{-3}$ for the correctness of (5) In terms of pressures the relationship between small and large stars can be stated as

$$e^2 n^{4/3} < M^{2/3} n^{4/3} m_N^{4/3}$$ \hspace{1cm} (5.173)

or equivalently as
\[e^3 m_n^{-2} < M. \] \hspace{1cm} (5.174)

On the other hand since

\[e^3 m_n^{-2} < M \] \hspace{1cm} (5.175)

other stuff

\[\frac{dP}{dr} = -\rho M(r)r^{-2} \] \hspace{1cm} (5.176)

where

\[M(r) = 4\pi \int_0^r \rho r^2 dr. \]

Multiply (5.176) by \(r^4 \) and integrate the LHS by parts from 0 to \(r \), and since \(p = 0 \) at \(r_0 \) we obtain:

\[4 \int_0^{r_0} pr^3 dr = \frac{(M(r_0))^2}{8\pi}. \] \hspace{1cm} (5.177)
Figure 5.71: starCollaps.

On the other hand, since $\frac{dp}{dr}$ is never positive,

$$
\frac{d}{dr} \left(\int_0^r pr^3 \right)^{3/4} < \frac{3\sqrt{2}}{4} p^{3/4} r^2.
$$

(5.178)

Also p is never greater than $\hbar n^{3/4}$, hence,

$$
\int_0^{r_0} pr^3 dr' < h (nr^2 dr)^{4/3} = h(M(r_0))^{4/3}(4\pi m_n)^{-4/3}.
$$

(5.179)

From (5.177), after simplification,

$$
M(r_0) < (8\pi)^{3/2}(4\pi)^{-1/2}m_n^{-2} < 8\hbar^{3/2} m_n^{-2}
$$

(5.180)

When the body is static, spherically symmetric and is composed of a perfect fluid, the Einstein field equations can be reduced to

$$
\frac{dp}{dr} = - \frac{(\mu + p)(\dot{M}(r) + 4\pi r^3 p)}{r(r - 2\dot{M}(r))}
$$

(5.181)

where the radial coordinate is such that the area of the 2-surface ($r =$constant, $t =$constant.) is $4\pi r^2$. Similar to the Newtonian case the function $\dot{M}(r)$, represents the mass defined by the integral:

$$
\dot{M}(r) = \int_0^r 4\pi r^2 \mu dr
$$

(5.182)
where \(\mu = \rho(1 + \epsilon) \) is the total energy density, \(\rho = nm_m \) (\(n \) times the mass of the nucleon) and \(\epsilon \) is the relativistic increase of mass associated with the momentum of the fermions. \(\mu \) The function \(\tilde{M}(r_0) \) equals the Schwarzschild mass of the exterior Schwarzschild solution for \(r > r_0 \). For a bounded star \(\tilde{M}(r_0) \) will be less than the conserved mass:

\[
\tilde{M} = \int_{r_0}^{r} \frac{4\pi \rho r^2 dr}{(1 - 2M/r)^{1/2}}
\]

(5.183)

where \(N \) is the total number of nucleons in the star. The difference \(\tilde{M} - \tilde{M} \) represents the amount of energy (binding energy) radiated off to infinity since the formation of the star from dispersed matter initially at rest.

5.2.2 The Cauchy Problem - Existence and Uniqueness

Local existence and uniqueness (Bruhat, Hugh-Kato-Marsden, Christ.-K) Tools: Classical theory of nonl. hyperb. eqts. Energy estimates, Sobolev inequalities, canonical bootstrap strategy as developed by Sobolev, Friedrichs, Leray, Kato, John etc. 1930-1970. Results: Need \((\Sigma, g, k) \)

\[
g \in H^s_{loc}(\Sigma), \ k \in H^{s-1}_{loc}(\Sigma), \ s > 5/2
\]

585
Strictly we can only say a closed trapped surface has been formed if there exists a solid theoretical understanding of the relation between exact solutions of Einstein’s equations and those which approximate them.

Second Order Hyperbolic Equations

The energy inequality relates the size of an integral involving the derivatives of the data and a similar integral of the solution.

The Cauchy problem for the Einstein equations Alan D. Rendall, [8].

the evolution equations are (essentially) hyperbolic but we also have to solve the constraints to produce initial data for the evolution equations. We need to work with function spaces which are adapted to the hyperbolic equations and are also compatible with elliptic equations.

These spaces can be defined as follows. Choose a Riemannian metric on the manifold S (we are still assuming that S is compact). If f is a C^∞ function define its Sobolev norm of order s to be

$$
\| f \|_{H^s} = \left[\sum_{k=0}^{s} \int_S |\nabla^k f|^2 \right]^{1/2}
$$

(5.184)

where $\nabla^k f$ denotes the covariant derivative of f of order k, ... The Sobolev space $H^s(S)$ is defined to be the completion of the space of C^∞ functions with respect to this norm. Now the norm depends on the choice of auxiliary Riemannian metric but the norms obtained for different metrics are equivalent, what this means is the following. Say we have two different metrics with respective norms $\| f \|_{H^s}$ and $\| f \|'_{H^s}$, there exists positive finite numbers C_1 and C_2 such that

$$
C_1 \| f \|_{H^s} \leq \| f \|'_{H^s} \leq C_2 \| f \|_{H^s}.
$$

(5.185)

If a sequence is a Cauchy series in one norm it is a Cauchy series in the other. The two norm spaces are topologically equivalent, the completions are . If a series of functions converges for one norm space it does in the other. In this sense $H^s(S)$ is independent of the auxiliary metric chosen. The relation to the more usual maximum norm is as follows. Suppose $m > \text{dim}(N)/2$. Then

$$
\| \psi \| < \text{const.} \times \| \psi, N \|_{m}.
$$

(5.186)

5.2.3 Non-Linear Hyperbolic Differential Equations

Quasi-Linear First Order PDEs in 2D

$$
a(u, x, y) \frac{\partial u}{\partial x} + b(u, x, y) \frac{\partial u}{\partial y} = c(u, x, y)
$$

(5.187)
Write

\[G(x, y, u) = F(x, y, u) - u = 0. \]
(5.188)

The normal to the solution surface is in the direction

\[\nabla G = \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}, \frac{\partial G}{\partial u} \right) = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, -1 \right) \]
(5.189)

But in the surface, \(F = u \), implying

\[\nabla G = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, -1 \right) \]
(5.190)

Now let \(\mathbf{a} = (a, b, c) \)

\[\mathbf{a} \cdot \nabla G = a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} - c = 0 \]

So that \(\mathbf{a} \) is perpendicular to the normal to the solution surface. Implying that \(\mathbf{a} \) lies in the solution surface and we can distinguish in the surface lines everywhere parallel to \(\mathbf{a} \).

If we parameterize these lines using the variable \(\tau \), then they satisfy

\[\frac{dx}{d\tau} = a, \quad \frac{dy}{d\tau} = b, \quad \frac{du}{d\tau} = c \]
(5.191)

and are called characteristics or characteristic curves.

If initial conditions are given as values of \(u \) on some line in the \((x, y)\)–plane, this is equivalent to specifying a line, \(\Gamma_0 \), in the \((x, y)\)–plane.

Let \(\Gamma_0 \) be parameterized by \(s \), so that \(\Gamma_0 \) is \(x(s), y(s), u(s) \), we solve the PDE by starting at the initial line and integrating forward and backward along the characteristics.
Well-Posed-Problems

1) Existence - the problem must have a solution.

2) Uniqueness - the problem must have just one solution.

3) Continuous dependence on the boundary conditions - a small change in the boundary data must lead to a small change in the solution.

The third requirement is essential for physical reasons. If in a model of some physical situation, a small change in the boundary values, e.g. noise or measurement error, leads to a large change in the global solution then there is likely to be something wrong with the model (note this does not exclude the exponential divergences of solutions associated with chaotic behaviour.

The third requirement is of particular importance as we wish to show that we still have a closed-trapped surface when we make a small perturbation away from spherically symmetric black hole.

Examples

Quasi-linear first order systems.

Initial value problem (Cauchy problem) for the 1D wave equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

subject to

$$y(x,0) = y_0(x), \quad \frac{\partial y}{\partial t}(x,0) = v_0(x)$$

The solution exists and is given by uniquely by D’Alambert’s solution:

$$y(x,t) = \frac{1}{2} \left\{ y_0(x + ct) + y_0(x - ct) + \int_{x-ct}^{x+ct} v_0(s) ds \right\}.$$

To demonstrate continuous dependence on boundary data consider the two solutions

$$y = y_1(x,t), \quad y = y_2(x,t)$$

for initial conditions

$$y_1(x,0) = y_0(x), \quad \frac{\partial y_1}{\partial t}(x,0) = v_0(x)$$

$$y_2(x,0) = y_0(x) + \bar{y}(x), \quad \frac{\partial y_2}{\partial t}(x,0) = v_0(x) + \bar{v}(x).$$
The difference between the two solutions is
\[Y(x, t) = y_2(x, t) - y_1(x, t) \]
and D’Alambert’s solution gives
\[
Y(x, t) = \frac{1}{2} \left\{ \overline{y}(x + ct) + \overline{y}(x - ct) + \int_{x-ct}^{x+ct} \overline{v}(s) ds \right\}.
\]
This implies
\[
|Y| \leq \frac{1}{2} |\overline{y}(x + ct) + \overline{y}(x - ct)| + \left| \int_{x-ct}^{x+ct} \overline{v}(s) ds \right|
\leq \max |\overline{y}| + 2ct \max |\overline{v}| \quad (5.192)
\]
This implies

Second Order Semi-Linear Differential Equations in 2D

The general equation is
\[
a(x, y) \frac{\partial^2 \phi}{\partial x^2} + 2b(x, y) \frac{\partial^2 \phi}{\partial x \partial y} + c(x, y) \frac{\partial^2 \phi}{\partial y^2} + f(x, y, \phi, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}) = 0. \quad (5.193)
\]
We will find that the first three terms, involving the 2nd derivatives allow us to clarify the equation into one of three distinct types.

We do a change of coordinates
\[
(x, y) \mapsto (\xi(x, y), \eta(x, y))
\]
with
\[
\frac{\partial(\xi, \eta)}{\partial(x, y)} \neq 0
\]
so that the transformation is invertible. Let \(\phi(x, y) = \psi(\xi, \eta) \). This implies
\[
\phi_x = \xi_x \psi_\xi + \xi_x \psi_\eta
\]
\[
\phi_{xx} = \xi_x^2 \psi_{\xi\xi} + 2\xi_x \eta_x \psi_{\xi\eta} + \xi_x^2 \psi_{\eta\eta} + (\xi_{xx} \psi_\xi + \eta_{xx} \psi_\eta)
\]
Similarly for \(\phi_{xy} \) and \(\phi_{yy} \). Substituting these into the PDE equation gives
\[A\psi_\xi + 2B\psi_\eta + C\psi_\eta + F(\xi, \eta, \psi, \psi, \psi_\xi, \psi_\eta) = 0, \quad (5.194) \]

\[A, B, C \text{ being functions of } \xi \text{ and } \eta: \]

\[A = a\xi_x^2 + 2b\xi_x\xi_y + c\xi_y^2 \]
\[B = \frac{1}{2}[a\xi_x\eta_x + 2b(\eta_x\xi_y + \xi_x\eta_y) + c\xi_y\eta_y] \]
\[C = a\eta_x^2 + 2b\eta_x\eta_y + c\eta_y^2 \]

This can be expressed as

\[\begin{pmatrix} A & B \\ B & C \end{pmatrix} = \begin{pmatrix} \xi_x & \eta_x \\ \xi_y & \eta_y \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{pmatrix} \quad (5.195) \]

5.2.4 Existence and Uniqueness

Banach Fixed Point Theorem. Suppose that \(X \) is a nonempty complete metric space with metric \(d \) and suppose that the function \(S \) from \(X \) to itself is a strict contraction, that is, for some positive constant \(\rho < 1 \), and any \(x \) and \(y \) in \(S \),

\[d(S(x), S(y)) \leq \rho d(x, y). \quad (5.196) \]

Then \(S \) has a unique fixed point in \(X \).

Proof: Choose any point \(x_1 \in X \) and define a sequence by iteration: \(x_{k+1} = S(x_k) \). Condition (5.196) implies that

\[d(x_{k+2}, x_{k+1}) \leq d(x_{k+1}, x_k) \leq \rho^2 d(x_k, x_{k-1}) \leq \cdots \leq \rho^k d(x_2, x_1). \]

Therefore

\[
\begin{align*}
 d(x_{k+m}, x_{k+1}) & \leq d(x_{k+m}, x_{k+m-1}) + d(x_{k+m-1}, x_{k+m-2}) + \cdots + d(x_{k+2}, x_{k+1}) \\
 & \leq [\rho^{k+m-2} + \rho^{k+m-3} + \cdots + \rho^k] d(x_2, x_1) \\
 & \leq \frac{\rho^k}{1 - \rho} d(x_2, x_1). \quad (5.197)
\end{align*}
\]

It follows that \(\{x_k\}_{k=1}^\infty \) is a Cauchy sequence in \(X \), so it converges to a point \(x \in X \). Now \(S \) is continuous, so
\[d(x, S(x)) = \lim_{k \to \infty} d(x_k, S(x_k)) = \lim_{k \to \infty} d(x_k, x_{k+1}) = 0. \]

If \(x' \) is also a fixed point, then

\[d(x, x') = d(S(x), S(x')) \leq \rho d(x, x'), \]

so \(d(x, x') = 0 \) and \(x' = x \)

Higher order differential equations are equivalent to systems of first order differential equations. For example, setting

\[y_1 = y, \quad y_2 = \frac{dy}{dx}, \quad y_3 = \frac{d^2y}{dx^2}, \ldots, \quad y_n = \frac{d^{n-1}y}{dx^{n-1}}, \]

the \(n \)-th order differential equation

\[\frac{d^n y}{dx^n} = F \left(x, y, \frac{dy}{dx}, \ldots, \frac{d^{n-1}y}{dx^{n-1}} \right) \]

is equivalent to the systems of first order differential equations

\[
\begin{align*}
\frac{dy_1}{dx} &= y_2 \\
\frac{dy_2}{dx} &= y_3 \\
\vdots \\
\frac{dy_{n-1}}{dx} &= y_n \\
\frac{dy_n}{dx} &= F(x, y_1, y_2, \ldots, y_n). \quad (5.198)
\end{align*}
\]

5.2.5 Cauchy-Kowalewski Theorem

Theorem 5.2.1 (Cauchy-Kowalewski theorem): Let \(t, x^1, \ldots, x^{n-1} \) be coordinates of \(\mathbb{R}^n \). Consider a system of partial differential equations for \(n \) unknown functions \(\phi_1, \ldots, \phi_n \) in \(\mathbb{R}^n \), having the form

\[
\frac{\partial^2 \phi_i}{\partial t^2} = F_i(t, x^a; \phi_j; \frac{\partial \phi_j}{\partial t}, \frac{\partial \phi_j}{\partial x^a}, \frac{\partial^2 \phi_j}{\partial t \partial x^a}, \frac{\partial^2 \phi_j}{\partial x^a \partial x^b}) \quad (5.199)
\]
where \(F_i \) is an analytic function of its variables. Let \(f_i(x^a) \) and \(g_i(x^a) \) be analytic functions. Then there is an open neighbourhood \(O \) of the hypersurface \(t = t_0 \) such that within \(O \) there exists a unique analytic solution to the PDE such that

\[
\phi_i(t_0, x^a) = f_i(x^a) \quad \text{and} \quad \frac{\partial \phi_i}{\partial t}(t_0, x^a) = g_i(x^a).
\]

Non-Linear Hyperbolic Differential Equations

the metric defines the space-time over which it propagates

To obtain a solution of the non-linear equations one employs an iterative scheme on approximate linear equations whose solutions are shown to converge in a certain neighbourhood of the initial surface.

The quasilinear system

\[
\frac{\partial \psi}{\partial t} = C^i(\psi)\partial_i \psi + D(\psi), \quad (5.200)
\]

is replaced by a sequence of linear problems

\[
\frac{\partial \psi_{n+1}}{\partial t} = C^i(\psi_n)\partial_i \psi_{n+1} + F(\psi_n), \quad n > 0, \quad (5.201)
\]

all with data \(\psi_0 \). we solve a succession of linear problems in which the coefficients are determined by the solutions of the previous problem.

\[
\psi_{n+1} = T(\psi_n). \quad (5.202)
\]

If \(T \) has a fixed point \(\psi \), i.e., \(\psi = T(\psi) \), then this is a solution of the Cauchy problem.

Provided that these smoothness conditions are satisfied, uniqueness, stability and local existence of solutions of the Cauchy problem is guaranteed.

5.2.6 Reduced Einstein Equations

Two metrics \(g_1 \) and \(g_2 \) on a manifold are physically equivalent if there is a diffeomorphism which takes \(g_1 \) into \(g_2 \), and \(g_1 \) satisfies the field equations if and only if \(g_2 \) does. Thus the solutions of the field equations can be unique only up to a diffeomorphism. In order to obtain a definite member of the equivalence class of metrics which represents a spacetime, one introduces a fixed background metric and impose four gauge conditions on the covariant derivatives of the physical metric with respect to the background metric.

Positive definite metric \(e_{ab} \)
the Einstein-vacuum equations take the reduced form:

\[g^{ab} \partial_a \partial_b = N_{ab}(g, \partial g) \quad (5.203) \]

with \(N \) quadratic in the first derivatives \(\partial g \) of the metric.

Expressed relative to the wave coordinates \(x^a \) the spacetime metric \(g \) takes the form:

\[g = -N^2 dt^2 g_{ij}(dx^i + v^i dt)(dx^j + v^j dt) \quad (5.204) \]

where \(g_{ij} \) is a Riemannian metric on the slices \(\Sigma_t \), given by the level hypersurfaces of the time function \(t = x^0 \), \(N \) is the lapse function of the time foliation, and \(v \) is a vector-valued shift function.

Harmonic Coordinates

these coordinates are functions that solve the wave equation they can be constructed by solving a Cauchy problem for the wave equation.

Energy Estimates

energy estimates provide a general tool for deriving a priori estimates for hyperbolic equations. Together with Sobolev inequalities, which were developed for this reason, they allow us to prove local in time existence, uniqueness and continuous dependence on initial data for general classes of nonlinear equations

Klein-Gordon theory:

\[T_{ab} = \partial_a \phi \partial_b \phi - \frac{1}{2} h_{ab}(\partial_c \phi \partial^c \phi + m^2 \phi^2) \]

\[\partial^a (T_{ab}) = 0 \]

\[\partial^a (T_{ab} \xi^b) = 0. \quad (5.205) \]

i) Let \(S_0 \) be a closed ball on the initial hypersurface \(\Sigma_0 \);

ii) let \(\Sigma_1 \) denote the hypersurface \(t = t_1 \);

iii) let \(K = D^+(S_0) \cap J^-(\Sigma_1) \);

iv) let \(S_1 = D^+(S_0) \cap \Sigma_1 \) and

593
v) let S_2 denote the null portion of the boundary of K (see fig. 5.74).

We integrate (5.205)

$$\int_{S_{-1}} T_{ab} \xi^a \xi^b + \int_{S_2} T_{ab} \ell^a \xi^b = \int_{S_0} T_{ab} \xi^a \xi^b,$$

(5.206)

strong energy condition $-T^b_v \nu^b$ is a future directed timelike or null vector. Consequently we have $T_{ab} \ell^a \xi^b \geq 0$. Therefore $\int_{S_2} T_{ab} \ell^a \xi^b$ is nonnegative. we obtain

$$\int_{S_1} \left[\left(\frac{\partial \phi}{\partial t} \right)^2 + |\nabla \phi|^2 + m^2 \phi^2 \right] \leq \int_{S_0} \left[\left(\frac{\partial \phi}{\partial t} \right)^2 + |\nabla \phi|^2 + m^2 \phi^2 \right].$$

(5.207)

it shows that if ϕ_1 and ϕ_2 are both C^2. Write $\psi(x) = \phi_1(x) - \phi_2(x)$ so that $\psi = 0$ on S_0, then

$$\int_{S_1} \left[\left(\frac{\partial \psi}{\partial t} \right)^2 + |\nabla \psi|^2 + m^2 \psi^2 \right] \leq 0.$$

(5.208)

for $m \neq 0$ this implies $\psi = 0$ on S_1 and hance ψ vanishes throughout $D^+(S_0)$ as Σ_1 is arbitrary.

$$\int_{U_i} (S^{ab} t_{(a:b)}) dv = \int_{U_i} S^{ab} b_{(a} dv + \int_{U_i} S^{ab} t_{ab} dv$$

$$= \int_{\partial U_i \cap \partial U} S^{ab} t_{a} n_b dS - E(0) + E(t).$$

(5.209)

$$S^{ij} a_i b_j \geq 0.$$

(5.210)

Applying this to the first term in (5.209)
\[
\int_{U_t} S_{ab,t,a} dv + \int_{U_t} S_{ab,t,b} dv \geq -E(0) + E(t).
\] (5.211)

\textit{Surfaces} \(t = \text{constant}\)

\begin{center}
\includegraphics[width=\textwidth]{energycond.png}
\end{center}

Figure 5.75: EnergyCond.

5.2.7 Sobolev Inequalities

There is no simple relation between the maximum size of the derivatives of the data at points on the initial surface, and the maximum size of the derivatives of the solution in the domain of dependence. But there is a relation between the size of an integral involving the derivatives of the data and a similar integral for the solution. This integral is referred to as an energy, because in certain special cases it does have this physical interpretation.

By the classical Sobolev inequality,

\[
E \leq \exp \left(C t \sup_{0 \leq \tau \leq t} \| \partial^s \phi(\tau) \|_{H^{s-1}} d\tau \right)
\] (5.212)

provided that \(s > 5/2\).

Products

\[
\| K^I J^L P^Q, N \|_0 \leq P_2 \| K, N \|_m \| L, N \|_m.
\] (5.213)

if \(n \leq 4\) and \(2m > n\), then for any two fields \(K^I J^L P^Q \in W^m(N)\), the product \(K^I J^L P^Q\) is also in \(W^m(N)\).
5.2.8 Developments for the Empty Space Einstein Equations

The reduced Einstein equations

\[E_{cd}^{ab}(\phi^{cd}) = 8\pi T^{ab} - (\hat{R}^{ab} - \frac{1}{2} \hat{R}\hat{g}^{ab}) \quad (5.214) \]

are quasi-linear second order hyperbolic equations. i.e

\[L(K) \equiv A_{ij,ab} K^{I,ab} + B^{aP} K^{Q}_{P,a} + C^{PQ} K^{Q}_{P} = F_{I,J} \quad (5.215) \]

where \(A \) is a metric of Lorentz signature.

Take suitable trial field \(\phi_{ab}^{\prime} \) and use this to determine the values of the coefficients \(A, B \) and \(C \) in the operator \(E \). Using these values we then solve (5.214) as a linear equation with the prescribed initial data and obtain a new field \(\phi_{ab}^{\prime\prime} \). They show that under suitable conditions the map \(\alpha \) has a fixed point. This fixed point is the desired solution of the quasi-linear equation.

The map \(\alpha : W^{4+a}(U_{+}) \to W^{4+a}(U_{+}) \) will take the closed ball \(W(r) \) of some radius \(r \) into itself provided \(\| \phi, \mathcal{H}(0) \cap \overline{U} \|_{4+a} \) and \(\| \phi, \mathcal{H}(0) \cap \overline{U} \|_{3+a} \) satisfy

\[\| \phi, \mathcal{H}(0) \cap \overline{U} \|_{4+a} \leq \frac{1}{2} r P_{r,a} \]
\[\| \phi, \mathcal{H}(0) \cap \overline{U} \|_{3+a} \leq \frac{1}{2} r P_{r,a} \quad (5.216) \]

They show that \(\alpha \) has a fixed point if the above inequalities hold and if \(r \) is sufficiently small.
Suppose \(\phi'_1 \) and \(\phi'_2 \) are in \(W(r) \). For the fields \(\phi''_1 = \alpha(\phi'_1) \) and \(\phi''_2 = \alpha(\phi'_2) \) one establishess the inequality

\[
\| \phi''_1 - \phi''_2, U_+ \|_1 \leq rQ_5 \| \phi'_1 - \phi'_2, U_+ \|_1 \quad (5.217)
\]

where \(Q_5 \) is some constant independent of \(r \). Thus for sufficiently small \(r \), the map \(\alpha \) will be contracting in the \(\| \|_1 \) norm (i.e \(\| \alpha(\phi_1) - \alpha(\phi_2) \|_1 < \| \phi_1 - \phi_2 \|_1 \)).

Now

\[
\| \alpha(\phi) - \alpha^{n+1}(\phi'_1), U_+ \|_1 \leq rQ_5 \| \phi - \alpha^n(\phi'_1), U_+ \|_1
\]

As \(n \to \infty \) the right-hand side tends to zero. This implies that \(\| \alpha(\phi) - \phi, U_+ \|_1 = 0 \) and so that \(\alpha(\phi) = \phi \). Since the map \(\alpha \) is contracting the fixed point is unique in \(W(r) \). They therefore proved:

Proposition 5.2.2 If \(\hat{g} \) is a solution of the empty space Einstein equations, the reduced empty space Einstein equations have a solution \(\phi \in W^{4+a}(U_+) \) if \(\| \phi, H(0) \cap \overline{U}_{\gamma} \|_{4+a} \) and \(\| \phi, H(0) \cap \overline{U}_{\gamma} \|_{3+a} \) are sufficiently small. \(\| \phi, H(0) \cap \overline{U}_{\gamma} \|_{4+a} \) will be bounded and so \(\phi \) will be at least \(C^{(2+a)^-} \).

This shows that if one makes a sufficiently small perturbation in the intial data of an empty space solution of Einstein equations one obtains a solution in a region \(U_+ \).

5.2.9 Stability of Closed Trapped Surfaces

5.2.10 Apparent Horizons

The singularities that arise from localized gravitational collapse are associated with black holes. Intuitively, the Cosmic Censorship Hypothesis postulates that all singularities are hidden inside the event horizon, i.e. inside \(\overline{I}^-(\mathcal{I}^+) \), the boundary of the past of future null infinity, \(\mathcal{I}^+ \), the latter is usually assume to be complete.

5.3 The Big Bang

Cosmic background radiation
5.4 Biblioliographical notes

In this chapter I have relied on the following references: [?], [?], [57]

The details of the proof of the existence of pair of conjugate points on every causal geodesic follows the proof given in “Causality, Conjugate Points and Singularity Theorems in Space-time” by TONG, Pun Wai.

5.5 Sobolev Spaces

5.5.1 Review of L^p Spaces

Given a measurable subset $\Omega \subset \mathbb{R}^n$ the space $L^p(\Omega)$, $1 \leq p < \infty$, consists of all measurable functions $f : \Omega \to \mathbb{C}$ with finite L^p norm,

$$\|f\|_{L^p} = \left(\int_{\Omega} |f(x)|^p \, dx\right)^{1/p} < \infty.$$

For all values of $1 \leq p \leq \infty$ the spaces $L^p(\Omega)$ are Banach spaces.

Recall the inequality

$$\left(\sum_i |f_i g_i|^{1/p}\right)^{1/p} \leq \left(\sum_i |f_i|^{1/q}\right)^{1/q} \left(\sum_i |g_i|^{1/r}\right)^{1/r},$$

where

$$\frac{1}{p} = \frac{1}{q} + \frac{1}{r}.$$

The following is the integral version of the Holder inequality

$$\|fg\|_{L^p} \leq \|f\|_{L^q} \|g\|_{L^r}$$

whenever

$$\frac{1}{p} = \frac{1}{q} + \frac{1}{r}.$$

$$\| |\cdot|^{-\gamma} * f(x)\|_{L^q(\mathbb{R}^n)} \leq C\|f(x)\|_{L^p(\mathbb{R}^n)} \quad (5.218)$$

598
The Holder inequality is

$$\|f \ast g\|_{L^q(\mathbb{R}^n)} \leq \|f\|_{L^p(\mathbb{R}^n)} \|g\|_{L^{p'}(\mathbb{R}^n)}$$

A multi-index is an $n-$tuple

$$\alpha = (\alpha_1, \ldots, \alpha_m)$$

of natural numbers, associated with which is a differential operator,

$$|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n \quad \partial^\alpha f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \cdots \partial x_m^{\alpha_m}}.$$

Also

$$\nabla f = (\partial_1 f, \ldots, \partial_n), \quad |\nabla f| = \left(\sum_{j=1}^n |\partial_j f|^2 \right)^{1/2}$$

Definition Let Ω be a domain in \mathbb{R}^n. Denote by $D(\Omega)$ or $C^\infty_0(\Omega)$ the set of $C^\infty(\Omega)$ functions with compact support in Ω.

Definition Weak derivative:

We say that a given function $f \in L^1_{loc}(\Omega)$ has weak derivative D^α_wf, provided there exists a function $g \in L^1_{loc}(\Omega)$ such that

$$\int_\Omega g(x)\varphi(x)dx = (-1)^{|\alpha|} \int_\Omega f(x)\varphi^{(\alpha)}(x)dx \quad (5.219)$$

for all $\varphi \in C^\infty_0(\Omega)$, where $|\alpha| = \sum_{i=1}^m \alpha_i$ is the order of the derivative. If such a g exists, we define

$$D^\alpha_wf = g.$$
5.5.2 Hardy-Littlewood-Sobolev Inequality

We split the convolution with singular kernel into two parts:

\[| \cdot |^{-\gamma} \ast f(x) = \int_{|y| \geq R} \frac{f(x-y)}{|y|^\gamma} dy + \int_{|y| < R} \frac{f(x-y)}{|y|^\gamma} dy \]

We estimate the first term simply by Holder's inequality,

\[
\left| \int_{|y| \geq R} \frac{f(x-y)}{|y|^\gamma} dy \right| \leq \| f \|_{L^p} \left(\int_{|y| \geq R} |y|^{-\gamma'p'} dy \right)^{1/p'}
\]

\[= R^{\frac{\gamma}{p'} - \gamma} \| f \|_{L^p} \left(\int_{|y| \geq 1} |y|^{-\gamma'p'} dy \right)^{1/p'} \]

The integral converges if \(\gamma p' > n \),

The second part written as

\[
\left| \int_{|y| < R} \frac{f(x-y)}{|y|^\gamma} dy \right| \leq \sum_{k=0}^{\infty} \int_{2^{-k-1}R \leq |y| \leq 2^{-k}R} \frac{|f(x-y)|}{|y|^\gamma} dy
\]

\[\leq \sum_{k=0}^{\infty} \frac{1}{(2^{-k}R)^\gamma} \int_{|y| \leq 2^{-k}R} |f(x-y)| dy
\]

\[= \sum_{k=0}^{\infty} (2^{-k}R)^{-\gamma} \left(\int_{|y| \leq 2^{-k}R} dy \right) Mf(x)
\]

\[= \left(\frac{\Omega n-1}{n} \sum_{k=0}^{\infty} 2^{-k(n-\gamma)} \right) R^{n-\gamma} Mf(x) \]

where we require \(\gamma < n \) for the geometric series to converge.

Therefore we have found that for every \(x \in \mathbb{R}^n \) and every \(R > 0 \),

\[\| | \cdot |^{-\gamma} \ast f(x) \| \leq C_1 R^{\frac{\gamma}{p'} - \gamma} \| f \|_{L^p} + C_2 R^{n-\gamma} Mf(x) \]

where the \(C_1, C_2 \) are constants independent of \(R \) and \(x \).

Set the two terms on the right hand side equal

\[C_1 R^{\frac{\gamma}{p'} - \gamma} \| f \|_{L^p} = C_2 R^{n-\gamma} Mf(x) \]
\[R(x) = \left(\frac{C_1 \|f\|_{L^p}}{C_2 \mathcal{M}f(x)} \right)^{p/n} \]

where we have used \(p'/(p' - 1) = p \). Since \((n - \gamma)p/n = 1 - p/q\), we have

\[
\|f\|_{L^q} \leq C \left\| \frac{\partial f}{\mathcal{M}f} \right\|_{L^p}^{1-p/q} \left\| \mathcal{M}f \right\|_{L^p}^{p/q}
\]

Taking the \(L^p \) norm of both sides

\[
\|f\|_{L^q} \leq C \left\| \frac{\partial f}{\mathcal{M}f} \right\|_{L^p} \left\| \mathcal{M}f \right\|_{L^p}.
\]

\[\square \]

Corollary 5.5.1 *The Sobolev inequality*

\[
\|f\|_{L^q} \leq C \|\partial f\|_{L^p}
\]

for \(n/q = n/p - 1 \), in the non-sharp regime \(p > 1 \).

Proof: Proof of the Sobolev inequality. First we prove

\[
f(x) = \frac{1}{n\Omega_{n-1}} \int_{\Omega} \frac{\nabla f(y) \cdot (x - y)}{|x - y|^n} \, dy, \quad \text{a.e.}(\Omega).
\]

we then use \(\nabla f \cdot (x - y) \leq |\nabla f| \|(x - y)\| \) to obtain

\[
|f(x)| \leq \frac{1}{n\Omega_{n-1}} \int_{\Omega} \frac{|\nabla f(y)|}{|x - y|^{n-1}} \, dy
\]

As we will see, the Sobolev inequality the follows by applying the Hardy-Littlewood-Sobolev inequality.

By the fundamental theorem of calculus, for each \(w \in S_{n-1} \) we have
\[f(x) = \int_0^\infty \frac{d}{dr}f(x + \omega r)dr \equiv -\int_0^\infty w_1 \partial_1 f(x + \omega r)dr \]

where \(\Omega_{d-1} = 2\pi^{d/2}/(d/2 - 1)! \).

\(w_n \) is the volume enclosed by the unit sphere \(S^{n-1} \) in \(\mathbb{R}^n \).

Integrating with respect to \(w \),

\[\int_{S^{n-1}} f(x)dw = -\int_{S^{n-1}} \int_0^\infty w \cdot \nabla f(x + rw)drdw \]

implies

\[
\begin{align*}
f(x) &= -\frac{1}{nw_n} \int_{\mathbb{R}^n} \frac{w \cdot \nabla f(y)}{|x - y|^{n-1}} dy \\
&= -\frac{1}{nw_n} \int_{\mathbb{R}^n} \frac{(x - y) \cdot \nabla f(y)}{|x - y|^{n-1}} \\
&= \frac{1}{nw_n} \int_{\mathbb{R}^n} \frac{\nabla f(y) \cdot (x - y)}{|x - y|^n} dy
\end{align*}
\]

Therefore

\[|f(x)| \leq \frac{1}{\Omega_{d-1}} \int \frac{|\partial f(y)|}{|x - y|^{n-1}} dy = \frac{1}{\Omega_{d-1}} (| \cdot |^{1-n} \ast |\partial f|)(x) \]

we take the \(L^p \) norm and use (5.218) to get

\[\| f \|_{L^q} \leq \frac{1}{\Omega_{d-1}} \| | \cdot |^{1-n} \ast |\partial f| \|_{L^q} \leq \frac{C}{\Omega_{d-1}} \| \partial f \|_{L^p} \]

whenever \(p > 1 \) and

\[
1 - \frac{n - 1}{n} = \frac{1}{p} - \frac{1}{q}
\]

\[\square \]
5.5.3 Sobolev Inequalities

Lemma 5.5.2 By Cauchy’s inequality for non-negative \(a_1, \ldots, a_m \in \mathbb{R}\), we have

\[
\left(\prod_{i=1}^{m} a_i \right)^{\frac{1}{m}} \leq \frac{1}{m} \sum_{i=1}^{m} a_i.
\]

(5.220)

Proof:

For example

\[
\left(\prod_{i=1}^{2} a_i \right)^{\frac{1}{2}} \leq \frac{1}{2} \sum_{i=1}^{2} a_i
\]

as follows from \((a_1 - a_2)^2 \geq 0\), which implies \(4a_2a_2 \leq a_1^2 + a_2^2 + 2a_1a_2 = (a_1 + a_2)^2\).

Take case \(m = 3\). Consider

\[
(a_1 + a_2 + a_3)^3 = (a_1 + a_2 + a_3)(a_1 + a_2 + a_3)^2
\]

\[
= (a_1 + a_2 + a_3)(a_1^2 + a_2^2 + a_3^2 + 2a_1a_2 + 2a_1a_3 + 2a_2a_3)
\]

We make use of \(2ab \leq a^2 + b^2\).

\[
(a_1^2 + a_2^2 + a_3^2) = \frac{1}{2} \left[(a_1^2 + a_2^2) + (a_1^2 + a_3^2) + (a_1^2 + a_3^2) \right]
\]

\[
\geq a_1a_2 + a_1a_3 + a_2a_3
\]

Hence

\[
(a_1 + a_2 + a_3)^3 = (a_1 + a_2 + a_3)(a_1 + a_2 + a_3)^2
\]

\[
= 3(a_1 + a_2 + a_3)(a_1a_2 + a_1a_3 + a_2a_3)
\]

\[
= 3[3a_1a_2a_3 + a_1(a_2^2 + a_3^2) + a_2(a_1^2 + a_3^2) + a_3(a_1^2 + a_2^2)]
\]

\[
\geq 27a_1a_2a_3
\]

So we have proved

\[
(a_1a_2a_3)^{\frac{2}{3}} \leq \frac{1}{3}(a_1 + a_2 + a_3)
\]

603
Cases $m > 3$ are proved similarly.

\[\square\]

Lemma 5.5.3 The Gagliardo-Nirenberg-Sobolev inequality.

\[\|f\|_p \leq C_n(q) \|\nabla f\|_q.\] \hfill (5.221)

\[p = \frac{qn}{n - q}.\]

In particular for $q = 1$, $p = n(n - 1)$.

Proof:

\[\|f\|_{L^{\frac{n}{n-1}}(\mathbb{R}^n)} \leq C \prod_{j=1}^{n} \|\partial_j f\|_{L^1(\mathbb{R}^n)}^{1/n}.\] \hfill (5.222)

When $n = 2$,

\[\int \int |f(x_1, x_2)|^2 dx_1 dx_2 \leq \int \int \int |\partial_{y_1} f(y_1, x_2)| dy_1 \int |\partial_{y_2} f(x_1, y_2)| dy_2 dx_1 dx_2 \]

\[= \|\partial_{y_1} f\|_{L^1} \|\partial_{y_2} f\|_{L^1}.\]

Now $n = 3$,

\[|f(x)|^{3/2} \leq \left(\int |\partial_{y_1} f(y_1, x_2, x_3)| dy_1 \right)^{1/2} \left(\int |\partial_{y_2} f(x_1, y_2, x_3)| dy_2 \right)^{1/2} \left(\int |\partial_{y_3} f(x_1, x_2, y_3)| dy_3 \right)^{1/2}.\]

We integrate with respect to x_1

\[\int |f(x_1, x_2, x_3)|^{3/2} dx_1 \leq \left(\int |\partial_{y_1} f(y_1, x_2, x_3)| dy_1 \right)^{1/2} \int \left(\int |\partial_{y_2} f(x_1, y_2, x_3)| dy_2 \right)^{1/2} \int \left(\int |\partial_{y_3} f(x_1, x_2, y_3)| dy_3 \right)^{1/2} dx_1\]

By the H"older inequality $\|fg\|_{L^1} \leq \|f\|_{L^2} \|g\|_{L^2},$
\[
\int \left(\int |\partial_{y_2} f(x_1, y_2, x_3)| dy_2 \right)^{1/2} \left(\int |\partial_{y_3} f(x_1, x_2, y_3)| dy_3 \right)^{1/2} dx_1 \\
\leq \left(\int |\partial_{y_2} f(x_1, y_2, x_3)| dy_2 dx_1 \right)^{1/2} \left(\int |\partial_{y_3} f(x_1, x_2, y_3)| dy_3 dx_1 \right)^{1/2}
\]

So

\[
\int |f(x_1, x_2, x_3)|^{3/2} dx_1 \leq \left(\int |\partial_{y_1} f(y_1, x_2, x_3)| dy_1 \right)^{1/2} \\
\left(\int \int |\partial_{y_2} f(x_1, y_2, x_3)| dy_2 dx_1 \right)^{1/2} \left(\int \int |\partial_{y_3} f(x_1, x_2, y_3)| dy_3 dx_1 \right)^{1/2}
\]

Similarly integration over \(x_2\) leads to

\[
\int |f(x_1, x_2, x_3)|^{3/2} dx_1 dx_2 \leq \left(\int \int |\partial_{y_1} f(y_1, x_2, x_3)| dy_1 dx_2 \right)^{1/2} \\
\left(\int \int |\partial_{y_2} f(x_1, y_2, x_3)| dy_2 dx_1 \right)^{1/2} \left(\int \int \int |\partial_{y_3} f(x_1, x_2, y_3)| dy_3 dx_1 dx_2 \right)^{1/2}
\]

and finally integration over \(x_3\) gives

\[
\int |f(x_1, x_2, x_3)|^{3/2} dx_1 dx_2 dx_3 \leq \left(\int \int \int |\partial_{y_1} f(y_1, x_2, x_3)| dy_1 dx_2 dx_3 \right)^{1/2} \\
\left(\int \int \int |\partial_{y_2} f(x_1, y_2, x_3)| dy_2 dx_1 dx_3 \right)^{1/2} \left(\int \int \int |\partial_{y_3} f(x_1, x_2, y_3)| dy_3 dx_1 dx_2 \right)^{1/2}
\]

By Cauchy’s inequality

\[
\prod_{j=1}^{3} \left(\int |\partial_j f| dx \right)^{1/3} \leq \frac{1}{3} \sum_{j=1}^{3} \int |\partial_j f| dx
\]

Hence

605
Thus we have established that

\[
\|f\|_{L^{3/2}(\mathbb{R}^3)} \leq \frac{1}{3} \sum_{j=1}^{3} \int |\partial_j f| dx \\
\leq \frac{1}{\sqrt{3}} \int \left[\sum_{j=1}^{3} |\partial_j f|^2 dx \right]^{1/2} \\
= \frac{1}{\sqrt{3}} \|\nabla f\|_{L^1(\mathbb{R}^3)}
\]

It is easy to generalize and obtain

\[
\|f\|_{L^{n/(n-1)}(\mathbb{R}^n)} \leq \frac{1}{\sqrt{n}} \|\nabla f\|_{L^1(\mathbb{R}^n)}.
\]

So the inequality of the lemma holds for \(p = 1 \).

Now we prove the case \(p < n \). For \(p > 1 \), we can use inequality (5.224) to obtain estimates for \(\| |f|^\gamma \|_{n/(n-1)} \), where \(\gamma > 1 \)

\[
\| |f|^\gamma \|_{n/(n-1)} \leq \frac{1}{\sqrt{n}} \|\nabla |f|^\gamma\|_{L^1} \\
= \frac{1}{\sqrt{n}} \int \gamma |f|^{\gamma-1} |\nabla f|
\]

By Holder’s inequality

\[
\left(\int |f|^\gamma \frac{n}{n-1} d^n x \right)^{\frac{n-1}{n}} \leq \frac{\gamma}{\sqrt{n}} \left(\int |f|^{(\gamma-1)q} d^n x \right)^{\frac{1}{q}} \cdot \left(\int |\nabla f|^p d^n x \right)^{\frac{1}{p}}
\]

where \(q = p/(p-1) \). Let \(\gamma \) satify

\[
\frac{\gamma n}{n-1} = (\gamma - 1)q = \frac{(\gamma - 1)p}{p-1}
\]

that is,

\[
\gamma = \frac{(n-1)p}{n-p} > 1.
\]
Then
\[
\left[\left(\int |f|^{n \frac{p}{n-p}} d^nx \right)^{\frac{p}{n-p}} \right]^{(n-1)p} \leq \gamma \frac{\gamma}{\sqrt{n}} \left[\left(\int |f|^{n \frac{p}{n-p}} d^nx \right)^{\frac{p}{n-p}} \right] \cdot \left(\int |\nabla f|^p d^nx \right)^{\frac{1}{p}}.
\]

Which implies
\[
\| f \|_{n-p}^{\frac{p}{n-p}} \leq \frac{(n-1)p}{(n-p)\sqrt{n}} \| \nabla f \|_p
\]
as required.

\[\square\]

Theorem 5.5.4
\[
\| f \|_{L^q(\mathbb{R}^n)} \leq C \| \partial^m f \|_{L^p(\mathbb{R}^n)}, \quad f \in C_0^\infty(\mathbb{R}^n)
\]
holds for
\[
\frac{1}{q} = \frac{1}{p} - \frac{m}{n} > 0, \quad m \in \mathbb{N}, \quad (1 \leq p < q < \infty).
\]

While for \(q = \infty \), we have
\[
\| f \|_{L^\infty(\mathbb{R}^n)} \leq C \sum_{k=0}^{m} \| \partial^k f \|_{L^p(\mathbb{R}^n)}, \quad f \in C_0^\infty(\mathbb{R}^n)
\]
where \(m > n/p \).

Proof: We obtain the cases with \(m > 1 \) by repeated iterations of the case \(m = 1 \). For example \(m = 2 \):
\[
\| f \|_{L^q(\mathbb{R}^n)} \leq C \| f \|_{L^{q'}(\mathbb{R}^n)}
\]
\[
\| f \|_{L^q(\mathbb{R}^n)} \leq C_1 \| \partial f \|_{L^{q'}(\mathbb{R}^n)}
\]
for
\[
\frac{1}{n} = \frac{1}{q'} - \frac{1}{q}
\]

\[
\|\partial f\|_{L^q'(\mathbb{R}^n)} \leq C_2\|\partial^2 f\|_{L^p(\mathbb{R}^n)}
\]

for

\[
\frac{1}{n} = \frac{1}{p} - \frac{1}{q'}
\]

Or

\[
\|f\|_{L^q(\mathbb{R}^n)} \leq C_1 C_2 \|\partial^2 f\|_{L^p(\mathbb{R}^n)}
\]

where

\[
\frac{2}{n} = \frac{1}{p} - \frac{1}{q}.
\]

Now

\[
\|\partial^{m-1} f\|_{L^q'(\mathbb{R}^n)} \leq C_m \|\partial^m f\|_{L^p(\mathbb{R}^n)}
\]

for

\[
\frac{1}{n} = \frac{1}{p} - \frac{1}{q'}
\]

and

\[
\|f\|_{L^q(\mathbb{R}^n)} \leq C_1 C_2 \ldots C_{m-1} \|\partial^{m-1} f\|_{L^q'(\mathbb{R}^n)}, \quad \text{for} \quad \frac{m-1}{n} = \frac{1}{q'} - \frac{1}{q}.
\]

So that

\[
\|f\|_{L^q(\mathbb{R}^n)} \leq C_1 C_2 \ldots C_m \|\partial^m f\|_{L^p(\mathbb{R}^n)}
\]

for

\[
\frac{m}{n} = \frac{1}{p} - \frac{1}{q}.
\]
Hence we assume \(m = 1 \)

It only remains to prove the case \(m = 1, p = 1, q = n/(n - 1) \).

\[\square \]

5.5.4 Classical Sobolev Spaces

Sobolev norm

\[
\| f \|_{W^{k,p}(\Omega)} := \left(\sum_{|\alpha| \leq k} \| \partial_\alpha f \|_{L^p(\Omega)}^p \right)^{1/p}, \quad \text{for } 1 \leq p < \infty.
\]

Differentiation in the sense of distributions.

For example

\[
\| f \|_{W^{1,p}(\Omega)} := \left(\| f \|_{L^p(\Omega)}^p + \sum_{j=1}^n \left\| \frac{\partial f}{\partial x_j} \right\|_{L^p(\Omega)}^p \right)^{1/p}
\]

Let \(f, g \in W^{k,p}(\Omega) \)

\[
\| f + g \|_{W^{k,p}(\Omega)} = \left(\sum_{|\alpha| \leq k} \| \partial_\alpha f + \partial_\alpha g \|_{L^p(\Omega)}^p \right)^{1/p} \\
\leq \left(\sum_{|\alpha| \leq k} \left[\| \partial_\alpha f \|_{L^p(\Omega)} + \| \partial_\alpha g \|_{L^p(\Omega)} \right]^p \right)^{1/p} \\
\leq \left(\sum_{|\alpha| \leq k} \| \partial_\alpha f \|_{L^p(\Omega)}^p \right)^{1/p} + \left(\sum_{|\alpha| \leq k} \| \partial_\alpha g \|_{L^p(\Omega)}^p \right)^{1/p} \\
= \| f \|_{W^{k,p}(\Omega)} + \| g \|_{W^{k,p}(\Omega)}
\]

Theorem 5.5.5 The Sobolev \(W^k_p(\Omega) \) space is a Banach space.

Proof: Let \(\{ v_j \} \) be a Cauchy sequence with respect to the norm \(\| \cdot \|_{W^k_p(\Omega)} \). Since this norm is just a combination of \(\| \cdot \|_{L^p(\Omega)} \) norms of weak derivatives, it follows, that for all \(|\alpha| \leq k \), \(\{ D^\alpha_w v_j \} \) is a Cauchy sequence with respect to the norm \(\| \cdot \|_{L^p(\Omega)} \).

First note that if \(w_j \rightarrow w \) in \(L^p(\Omega) \), then for all \(\varphi \in D(\Omega) \)
\[\int_{\Omega} w_j(x) \varphi(x) dx \to \int_{\Omega} w(x) \varphi(x) dx, \]

as follows from Holder’s inequality,

\[\|w_j \varphi - w \varphi\|_{L^p(\Omega)} \leq \|w_j - w\|_{L^p(\Omega)} \|\varphi\|_{L^\infty(\Omega)} \to 0 \]

as \(j \to \infty \). To verify \(D_\alpha^nu = v^\alpha \) we must show that

\[\int_{\Omega} v^\alpha \varphi(x) dx = (-1)^{\|\alpha\|} \int_{\Omega} v \varphi(\alpha)(x) dx \]

for all \(\varphi \in D(\Omega) \).

\[\int_{\Omega} v^\alpha \varphi(x) dx = \lim_{j \to \infty} \int_{\Omega} D_\alpha^j v \varphi(x) dx \]

\[= (-1)^{\|\alpha\|} \int_{\Omega} v \varphi(\alpha)(x) dx \]

\[= (-1)^{\|\alpha\|} \int_{\Omega} v \varphi(\alpha)(x) dx \]

for all \(\varphi \in D(\Omega) \).

\[\square \]

For the derivatives \(\partial^\alpha f(x) \), we have

\[\partial^\alpha \hat{f}(k) = (ik)^\alpha \hat{f}(k) = i^{\|\alpha\|} k^\alpha \hat{f}(k) \]

Then

\[\|f\|_{H^m(\mathbb{R}^n)} = \sum_{|\alpha| \leq m} \int_{\mathbb{R}^n} |\partial^\alpha f|^2 dx = \int_{\mathbb{R}^n} \left(\sum_{|\alpha| \leq m} |k^\alpha|^2 \right) |\hat{f}(k)|^2 dk \]

\[= \int_{\mathbb{R}^n} |f(x)|^2 dx = \int_{\mathbb{R}^n} |\hat{f}(k)|^2 dk, \quad f \in L^2(\mathbb{R}^n) \]

Obviously

\[\frac{1}{2}(1 + |k|^2)^2 \leq \frac{1}{2}(1 + 2|k|^2 + |k|^4) \leq 1 + |k|^2 + |k|^4 \leq (1 + 2|k|^2 + |k|^4) = (1 + |k|^2)^2 \]
Since
\[
c_1(1 + |k|^2)^m \leq \sum_{|\alpha| \leq m} |k^\alpha|^2 \leq c_2(1 + |k|^2)^m
\]

Thus

For example
\[
c_1 \left(\int_{\Omega} |f(k)|^2(1 + |k|^2)^m d^n k \right)^{1/2} \leq \|f\|_{H^m(\mathbb{R}^n)} \leq c_2 \left(\int_{\Omega} |f(k)|^2(1 + |k|^2)^m d^n k \right)^{1/2}
\]

Thus the norm
\[
\left(\int_{\mathbb{R}^n} |f(k)|^2(1 + |k|^2)^m d^n k \right)^{1/2}
\]

is equivalent to the standard norm in \(W^m_2(\mathbb{R}^n) \).

Product theorem
\[
\|fg\|_{W^{s,2}(\Omega)} = \int_{\Omega} |\tilde{f}g|^2(1 + |k|^2)^s d^n k
\]

\[
|\tilde{f}g|^2 = \int_{\Omega} \int_{\Omega} \tilde{f}(k + l_1)\tilde{g}(l_1)\tilde{f}(k + l_2)\tilde{g}(l_2) d^n l_1 d^n l_2
\]

\[
f_1 = \tilde{f}(x_1)(1 + |x_1|^2)^{u/2}
\]

\[
f_2 = \tilde{f}(x_2)(1 + |x_2|^2)^{u/2}
\]

\[
f_3 = \tilde{g}(x_3)(1 + |x_3|^2)^{t/2}
\]

\[
f_4 = \tilde{g}(x_4)(1 + |x_4|^2)^{t/2}
\]

\[
\phi = (1 + |k|^2)^s(1 + |l_1|^2)^{-u/2}(1 + |k + l_1|^2)^{-u/2}(1 + |l_2|^2)^{-t/2}(1 + |k + l_2|^2)^{-t/2}
\]

\[
A = \int f_1 f_2 f_3 f_4 \phi d^n l_1 d^n l_2 d^n k
\]

Use Cauchy inequality

\[
A \leq \int [P_1(k)P_2(k)Q(k)]^{1/2} d^n k
\]
where

\[P_1(k) = \int f_1 f_3 d^n l_1 \]
\[P_2(k) = \int f_2 f_4 d^n l_2 \]
\[Q(k) = \int \phi d^n l_1 d^n l_2 \] \hspace{1cm} (5.228)

\[
\int |P_1|^2 d^n k = \int \left| \int \tilde{f}(k + l_1) \tilde{g}(l_1) (1 + |k + l_1|^2)^{t/2} (1 + |l_1|^2)^{u/2} d^n l_1 \right|^2 d^n k \\
= \int |\tilde{f}|^2 (1 + |k|)^u d^n k \int |\tilde{g}|^2 (1 + |k|)^t d^n k \\
= \| \tilde{f} \|_u \| \tilde{g} \|_t
\]

\(Q(k) \) is bounded

5.5.5 Fractional \(H^s \)-Sobolev Spaces

\[
\| f \|_{H^s(\mathbb{R}^n)} = \left(\sum_{|\alpha| \leq k} \int_{\mathbb{R}^n} |\partial^\alpha f(x)|^2 dx + \sum_{|\alpha| = k} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|\partial^\alpha f(x) - \partial^\alpha f(y)|^2}{|x - y|^{n+2s}} dxdy \right)^{1/2}
\]

5.6 Worked Exercises and Details

Details Hamiltonian.

\[
R_{00} = \frac{N''}{2a} - \frac{N'}{4a} \left(\frac{N'}{N} + \frac{a'}{a} \right) + \frac{N'}{ra'} \] \hspace{1cm} (5.229)
\[
R_{11} = -\frac{N''}{2N} - \frac{N'}{4N} \left(\frac{N'}{N} + \frac{a'}{a} \right) + \frac{a'}{ra'} \] \hspace{1cm} (5.230)
\[
R_{22} = 1 - \frac{r}{2a} \left(\frac{N'}{N} + \frac{a'}{a} \right) - \frac{1}{a} \] \hspace{1cm} (5.231)
\[
R_{33} = R_{22} \sin^2 \theta. \] \hspace{1cm} (5.232)

Thus the Ricci scalar
\[R = g^{\mu\nu} R_{\mu\nu} = -6 \frac{k + (a/N)(\dot{a}/N)/c^2 + (a/\dot{N})^2/c^2}{(a/N)^2} \] (5.233)

\[G_{00} = 3 \dot{R}/R^2 c^2 + 3k/R^2 \] (5.234)

\[G_{11} = - \frac{k + 2R\ddot{R}/c^2 + \dddot{R}/c^2}{1 - k\sigma^2} \] (5.235)

Details Hamiltonian.

(a) Find the action for isotropic spacetimes with scalar matter field \(\phi(x) \).

(b) Check that the equations of motion of this action gives the Friedmann equation

\[\left(\frac{\dot{a}}{a} \right)^2 = \frac{16\pi G}{3} \rho(a) \] (5.236)

\[\rho(a) = a^{-3}H(a) = a^{-3} \left(\frac{1}{2} \frac{p_\phi^2}{a^2} + a^3V(\phi) \right) \] (5.237)

(a)

\[S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} \left[\frac{1}{2} (\partial_{\mu}\phi)^2 - V(\phi) \right], \] (5.238)

where \(R \) is the Ricci scalar curvature and \(V \) is a matter potential.

\[ds^2 = N^2(t) dt^2 - a^2(t) d\sigma^2 \] (5.239)

\[d\sigma^2 = \frac{1}{1 - Kr^2} dr^2 + r^2 (d\theta^2 + \sin^2 \theta \, d\phi^2) \] (5.240)

\[(g_{\mu\nu}) = \left(\begin{array}{cccc}
N^2 & 0 & 0 & 0 \\
0 & \frac{1}{1-Kr^2} & 0 & 0 \\
0 & 0 & -a^2 r^2 & 0 \\
0 & 0 & 0 & -a^2 r^2 \sin^2 \theta \\
\end{array} \right), \quad (g^{\mu\nu}) = \left(\begin{array}{cccc}
\frac{1}{N^2} & 0 & 0 & 0 \\
0 & -\frac{1}{a^2} & 0 & 0 \\
0 & 0 & \frac{1}{a^2 r^2} & 0 \\
0 & 0 & 0 & \frac{1}{a^2 r^2 \sin^2 \theta} \\
\end{array} \right). \] (5.241)
\[g_{00} = g^{00} = 1 \quad g_{11} = \frac{1}{g^{11}} = -\frac{R^2}{1 - k\sigma^2} \]
\[g_{22} = \frac{1}{g^{22}} = -R^2\sigma^2 \quad g_{33} = \frac{1}{g^{33}} = -R^2\sigma^2 \sin^2 \theta. \]

(5.242)

\[-\det(g_{\mu\nu}) = \frac{N^2 a^6 r^2 \sin^2 \theta}{1 - Kr^2} \]

(5.243)

\[
\int d^4x \sqrt{-g} \left[\frac{1}{2} (\partial\mu\phi)^2 - V(\phi) \right] = \int dt \int dr d\theta \sin \theta d\phi \left(\frac{r^2}{1 - Kr^2} \right)^{1/2} N a^3 \left[\frac{1}{2 N^2} \dot{\phi}^2 - V(\phi) \right]
= \mathcal{K} \int dt N(t) \left\{ \frac{1}{2} a^3 \frac{\dot{\phi}^2}{N^2(t)} - a^3 V(\phi) \right\}
\]

(5.244)

where \(\mathcal{K}\)

\[
\mathcal{K} = \int dr \frac{r}{(1 - Kr^2)^{1/2}}
\]

\(\phi = \phi(r)\)

\[
\partial_\mu \partial^\mu \phi = \frac{1}{N^2} \dot{\phi}^2 + 0
\]

(5.246)

\[
S = \int dt N(t) \left\{ \frac{3}{8\pi G} a \left(K - \frac{\dot{a}^2}{N^2(t)} \right) + \frac{1}{2} a^3 \frac{\dot{\phi}^2}{N^2(t)} - a^3 V(\phi) \right\},
\]

(5.247)

(b)

\[
\frac{\partial L}{\partial a} - \frac{d}{dt} \frac{\partial L}{\partial \dot{a}} = 0
\]

(5.248)

\[
\frac{\partial L}{\partial a} = N(t) \left\{ \frac{3}{8\pi G} \left(K - \frac{\dot{a}^2}{N^2(t)} \right) + \frac{3}{2} a^2 \frac{\dot{\phi}^2}{N^2(t)} - 3a^2 V(\phi) \right\}
\]

(5.249)

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{a}} = -\frac{6}{8\pi G} \frac{d}{dt} \left(\frac{\dot{\phi}}{N(t)} \right) = \frac{6}{8\pi G} \dot{N}(t) \frac{\dot{\phi}}{N^2(t)} - \frac{\ddot{\phi}}{N(t)}
\]

(5.250)
\[N(t) \frac{3}{8\pi G} \left(K - \frac{d^2}{N^2(t)} \right) = \frac{6}{8\pi G} \left(\frac{\ddot{\phi}}{N(t)} - \dot{N}(t) \frac{\dot{\phi}}{N^2(t)} \right) + N(t)3a^2V(\phi) - \frac{3}{2}a^2 \frac{\dot{\phi}^2}{N(t)} \tag{5.251} \]

Singularity Theorems

Details Hamiltonian.

there would not be any null geodesic \(\gamma \) which is directed along a principal null direction at six or more of its points.

Details Hamiltonian.

\(\mathcal{M} \) may be topologically embedded in a finite dimensional Euclidean space, so \(\mathcal{M} \) is Lindelof. If \(K \) is non-compact, there is an open cover with nonfinite subcover; by paracompactness, there is a locally finite open refinement of this; since the space is Lindelof, there is a countable subcover of this. Since simple regions form a basis, this final cover may be taken to consist of simple regions.

Not sure if I want this included?

Details Hamiltonian.

the matrix \(A \) is non-singular between \(p \) and \(q \), \(Y^\mu = \sum_\nu (A^{-1})^\mu_\nu X^\nu \).

\[2\omega_{\alpha\beta} = (A^{-1})_{\gamma\beta} \frac{d}{dt}A_{\alpha\gamma} - (A^{-1})_{\gamma\alpha} \frac{d}{dt}A_{\beta\gamma} \tag{5.252} \]

(5.78)

\[L = \int_a^b A_{\mu\nu} Y^\nu \left(\frac{d^2}{dt^2} (A_{\mu\gamma} Y^\gamma) + R_{\muab} T^a T^b A_{\mu\gamma} Y^\gamma \right) dt \tag{5.253} \]

(5.63)

\[L = \lim_{\epsilon \to 0} - \int_{a+\epsilon}^b A_{\alpha\beta} Y^{\beta} \left(2 \frac{d}{dt} A_{\mu\gamma} \frac{d}{dt} Y^\gamma + A_{\mu\gamma} \frac{d^2}{dt^2} Y^\beta \right) \tag{5.254} \]
We take the limit because the second derivative of Y^β may not be well defined at q. Integrating the second term by parts

\[
\int_a^b A_{\alpha\beta}Y^\beta A_{\mu\gamma} \frac{d^2}{dt^2} Y^\gamma = - \int_a^b \frac{d}{dt} (A_{\alpha\beta}Y^\beta A_{\mu\gamma}) \frac{d}{dt} Y^\gamma dt
\]

\[
= - \int_a^b \left[A_{\alpha\beta}Y^\beta \frac{d}{dt} A_{\mu\gamma} \frac{d}{dt} Y^\gamma + (A_{\alpha\beta} \frac{d}{dt} Y^\beta)(A_{\mu\gamma} \frac{d}{dt} Y^\gamma) + Y^\beta A_{\mu\gamma} \frac{d}{dt} A_{\alpha\beta} \frac{d}{dt} Y^\gamma \right] dt
\]

(5.255)

substituting this into (5.254)

\[
L = -\Sigma \int_0^s \left\{ (A_{\alpha\beta} \frac{d}{dt} Y^\beta)(A_{\alpha\delta} \frac{d}{dt} Y^\delta) + Y^\beta \left((\frac{d}{dt} A_{\alpha\beta}) A_{\alpha\delta} - A_{\alpha\beta} \frac{d}{dt} A_{\alpha\delta} \right) \right\}
\]

(5.256)

\[
\left(\frac{d}{dt} A_{\alpha\beta} \right) A_{\alpha\delta} - A_{\alpha\beta} \frac{d}{dt} A_{\alpha\delta} = -2A_{\alpha\delta} \omega_{\alpha\gamma} A_{\alpha\delta} = 0.
\]

(5.257)

\[
L \leq 0.
\]

(5.258)

(empty)

satisfy $E'_1(\phi'^1) = 0$, $E'_2(\phi'^2) = 0$ where E'_1 is the Einstein operator with the coefficients A'_1, B'_1 and C'_1 determined by ϕ'_1.

Since the coefficients