Spin-Networks

Contents

1	Spin Networks			
	1.1	Diagra	ammatic Mathematics	6
		1.1.1	Line, Bend ad Loop	6
		1.1.2	Symmetrizing Products of Delta Functions	9
		1.1.3	Jones-Wenzl Projectors	10
		1.1.4	Contractions of Symmetrised Lines	14
		1.1.5	3-Vertices	21

List of Figures

1.1	Diagramatically representation of δ_B^A	6
1.2	A trial diagrammatic representation of ϵ_{AB}	7
1.3	A trial diagrammatic representation of ϵ_{AB}	7
1.4	First problem with diagrammatic representation of ϵ_{AB} and ϵ^{AB}	7
1.5	Second problem with diagrammatic representation of ϵ_{AB} and ϵ^{AB}	8
1.6	The diagrammatic representation of the binor indentity $\tilde{\epsilon}_{AC}\tilde{\epsilon}^{BD} - \delta^D_A\delta^B_C + \delta^B_A\delta^D_C = 0$	8
1.7	The symmetric product of n delta functions, is a projector	10
1.8	Applying the symmetric product of k delta functions to the symmetric product of n delta functions results in the symmetric product of n delta functions	10
1.9	Diagrammatical representation of equation (1.16) with $\mu_1 = -1/2.$	11
1.10	graphmath7. Diagramatical representation of (1.17)	11
1.11	Diagramatical representation of (1.18)	12
1.12	graphmath8	12
1.13	Diagrelfor3. Compact diagrammatical representation of (1.21)	13
1.14	graphmath11. Representing equation (1.23)	13
1.15	graphmath12. Diagrammatical representation of (1.24)	14
1.16	graphmath13	15
1.17		15
1.18	graphmath2. The contraction of the symmetric product of deltas, the resulting values denoted Δ_n	16

1.19	graphmath 2A. Calculation of Δ_2	16
1.20	graphmath3A	17
1.21	graphmath3	17
1.22	graphmath1	18
1.23	P math4	18
1.24	graphmath5	18
1.25	graphmath6	19
1.26	P math4	19
1.27	Definition of 3-vertex	21
1.28	P	21
1.29	graphmath15	22
1.30	graphmath16	22
1.31	graphmath17	23
1.32	graphmath18	23
1.33	graphmath18A	24
1.34	graphmath19	24
1.35	graphmath20	25
1.36	graphmath21	25
1.37	graphmath22	25
1.38	This one	26
1.39	graphmath23	27
1.40	graphmath25	28
1.41	graphmath24	28
1.42	graphmath26	29
1.43	Netmpp	30
1.44	Netmn1p-2. Equivalence of last network in fig (1.1.5) with $Net(m, n, 1, p-2)$.	31
1.45	Netmpepi	32

1.46	Netmpe+1pi-1	33
1.47	recouplefig. The recoupling equation	35
1.48	TetDef	36
1.49	6jandTET	36
1.50	Tetfig2	37
1.51	reductfigs	38
1.52	reductfigs2	38
1.53	recoupfig2. Proof of the orthogonality identity	38

Chapter 1

Spin Networks

Mostly follows "A Spin Network Primer" [?]

1.1 Diagrammatic Mathematics

Diagrammatic algebra designed too handle the combinatorics of irreducible representations, all the familiar results of representation theory have diagrammatical form.

1.1.1 Line, Bend ad Loop

Consider the tensor

$$(\delta_B^A) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

which can be represented diagramatically as in fig 1.1

$$\delta_{A}^{B} \sim \int_{A}^{B}$$

Figure 1.1: Diagramatically representation of δ^A_B

Consider the two antisymmetric tensors

$$(\epsilon_{AB}) = (\epsilon^{AB}) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \tag{1.1}$$

We associate a curve with a matrix with two upper (lower) indices. The first trial for ϵ_{AB} we look at is in fig (1.2) and for ϵ^{AB} fig (1.3)

$$\mathcal{E}_{AB} \sim \bigcap_{A \in B}$$

Figure 1.2: A trial diagrammatic representation of ϵ_{AB} .

$$\mathcal{E}^{AB} \sim \left(\begin{array}{c} A & B \\ \end{array}\right)$$

Figure 1.3: A trial diagrammatic representation of ϵ_{AB} .

This fits well with the diagramatities of $\delta^C_A \epsilon_{CB} = \epsilon_{AB}$. We soon find trouble with this choose however. Firstly:

$$\delta^C_A \epsilon_{CD} \epsilon^{DE} \delta^B_E = -\delta^B_A$$

and straightening a line yields a minus sign:

$$\bigwedge_{A} = - \left| \begin{array}{c} B & B \\ \\ A & A \end{array} \right|$$

Figure 1.4: First problem with diagrammatic representation of ϵ_{AB} and ϵ^{AB} .

Secondaly, as a consequence of

$$\epsilon_{AD}\epsilon_{BC}\epsilon^{CD}=-\epsilon_{AB},$$

However, these "topological" difficulties can be fixed by modifying the definition

$$\epsilon_{AB} \rightarrow \tilde{\epsilon}_{AB} = i \epsilon_{AB}.$$

$$\bigcap_{AB} = - \bigcap_{A}$$

Figure 1.5: Second problem with diagrammatic representation of ϵ_{AB} and ϵ^{AB} .

The diagrams in fig (1.4) and fig (1.5) will henceforth be associated with $\tilde{\epsilon}_{AB}$ and $\tilde{\epsilon}^{AB}$ respectively.

As the indices take two values, we have the identity

$$\epsilon_{[EB}\epsilon_{C]F} = 0 \tag{1.2}$$

which reduces to

$$\epsilon_{EB}\epsilon_{CF} + \epsilon_{BC}\epsilon_{EF} + \epsilon_{CE}\epsilon_{BF} = 0 \tag{1.3}$$

Contracting this with ϵ^{EA} and ϵ^{FD} , then using $\epsilon_{EB}\epsilon^{EA}=\delta^A_B$, $\epsilon_{CF}\epsilon^{FD}=-\delta^D_C$ and $\epsilon_{EF}\epsilon^{EA}\epsilon^{FD}=\epsilon^{AD}$ etc we obtain the so-called binor identity:

$$\epsilon_{AC}\epsilon^{BD} = \delta_A^B \delta_C^D - \delta_A^D \delta_C^B \tag{1.4}$$

Using the definitions of the $\tilde{\epsilon}$ matrices, the binor identity becomes

$$\tilde{\epsilon}_{AC}\tilde{\epsilon}^{BD} - \delta_A^D \delta_C^B + \delta_A^B \delta_C^D = 0. \tag{1.5}$$

Then introducing the rule that we assign a minus sign to each crossing, equation (1.5) can be diagrammatically, represented as in fig 1.6.

Figure 1.6: The diagrammatic representation of the binor indentity $\tilde{\epsilon}_{AC}\tilde{\epsilon}^{BD}-\delta^D_A\delta^B_C+\delta^B_A\delta^D_C=0$

For more than

 $\delta^C_A \epsilon_{CD} = \epsilon_{AB}.$

$$\delta^C_A \epsilon_{CD} \epsilon^{DE} \delta^B_E = \epsilon_{AD} \epsilon^{DB} = -\delta^B_A, \tag{1.6}$$

$$\epsilon_{AD}\epsilon_{BC}\epsilon^{CD} = -\epsilon_{AB} \tag{1.7}$$

$$\epsilon_{AB} \to \tilde{\epsilon}_{AB} = i\epsilon_{AB}$$
 (1.8)

$$\delta_A^D \tag{1.9}$$

Using these rules, we can show that these strands behave as would thin strings in the plane; one can arbitrary deform a graphical expression without changing its meaning.

In translating a diagram into tensor notation, we use

- 1. assign a minus sign to each
- 2. assign a minus sign to each crossing

1.1.2 Symmetrizing Products of Delta Functions

Define the $D_{(A B)}^{A'B'}$ as the symmetric product of two delta functions:

$$D_{(A B)}^{A'B'} := \frac{1}{2!} \left(\delta_A^{A'} \delta_B^{B'} + \delta_B^{A'} \delta_A^{B'} \right) \tag{1.10}$$

 $D_{(A B)}^{A'B'}$ are projectors i.e.

$$D_{(C\ D)}^{A'B'}D_{(A\ B)}^{C\ D} = \frac{1}{2!} \left(\delta_C^{A'} \delta_D^{B'} + \delta_D^{A'} \delta_C^{B'} \right) D_{(A\ B)}^{C\ D} = D_{(A\ B)}^{(A'B')} = D_{(A\ B)}^{A'B'}$$
(1.11)

More generally $D_{(A B \dots D)}^{A'B' \dots D'}$, the symmetric product of n delta functions, is a projector:

$$D_{(E F ...H)}^{A'B'...D'}D_{(A B ...D)}^{EF...H} = \frac{1}{n!} \left(\delta_E^{A'} \delta_F^{B'} ... \delta_H^{H'} + ... \right) D_{(A B ...D)}^{EF...H}$$
$$= D_{(A B ...D)}^{(EF...H)} = D_{(A B ...D)}^{EF...H}. \tag{1.12}$$

This general result can be represented diagramatically as in fig 1.1.2.

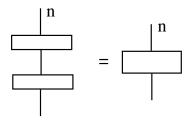


Figure 1.7: The symmetric product of n delta functions, is a projector.

Also note we have the result that if $D_{(A B \dots D_1 \dots D_k)}^{A'B' \dots D_1' \dots D_k'}$, the symmetric product of n delta functions, and if $D_{(D_1 \dots D_k)}^{D_1' \dots D_k'}$, the symmetric product of k delta functions (k < n):

$$D_{(A\ B\ ...H_{1}...H_{k})}^{A'B'...D'_{1}...D'_{k}}D_{(D_{1}\ ...D_{k})}^{H_{1}...H_{k}} = D_{(A\ B\ ...H_{1}...H_{k})}^{A'B'...D'_{1}...D'_{k}}\frac{1}{k!}\left(\delta_{D_{1}}^{H_{1}}...\delta_{D_{k}}^{H_{k}} + ...\right)$$

$$= D_{(A\ B\ ...H_{1}...H_{k})}^{A'B'...(D'_{1}...D'_{k})} = D_{(A\ B\ ...H_{1}...H_{k})}^{A'B'...D'_{1}...D'_{k}}.$$

$$(1.13)$$

This result can be represented diagramatically as in fig (1.1.2).

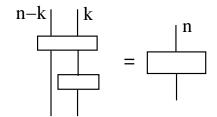


Figure 1.8: Applying the symmetric product of k delta functions to the symmetric product of k delta functions results in the symmetric product of k delta functions.

1.1.3 Jones-Wenzl Projectors

Starting from the binor identity

$$-\tilde{\epsilon}^{A'B'}\tilde{\epsilon}_{AB} = \delta_A^{A'}\delta_B^{B'} - \delta_B^{A'}\delta_A^{B'}, \tag{1.14}$$

a simple rearrangement gives

$$\frac{1}{2}(\delta_A^{A'}\delta_B^{B'} + \delta_A^{B'}\delta_B^{A'}) = \delta_A^{A'}\delta_B^{B'} + \frac{1}{2}\tilde{\epsilon}_{AB}\tilde{\epsilon}^{A'B'}$$
(1.15)

Written in the stanard form (see in a moment)

$$\delta_{(A}^{A'}\delta_{B)}^{B'} = \delta_A^{A'}\delta_B^{B'} - \mu_1 \tilde{\epsilon}_{AB} \tilde{\epsilon}^{A'B'} \tag{1.16}$$

where $\mu_1 = -1/2$. Which is diagramatically represented in fig 1.1.3.

Figure 1.9: Diagrammatical representation of equation (1.16) with $\mu_1 = -1/2$.

Jones-Wenzl Projectors for n = 3

We can rearange the symmetric product of the three deltas as follows

$$3\delta_{A}^{(A'}\delta_{B}^{B'}\delta_{C}^{C')} = \delta_{A}^{A'}\delta_{B}^{(B'}\delta_{C}^{C')} + \delta_{B}^{A'}\delta_{A}^{(B'}\delta_{C}^{C')} + \delta_{C}^{A'}\delta_{(B}^{B'}\delta_{A)}^{C'}$$

$$= 3\delta_{A}^{A'}\delta_{B}^{(B'}\delta_{C}^{C')} - \left(\delta_{A}^{A'}\delta_{B}^{(B'}\delta_{C}^{C')} - \delta_{B}^{A'}\delta_{A}^{(B'}\delta_{C}^{C')}\right) - \left(\delta_{A}^{A'}\delta_{B}^{(B'}\delta_{C}^{C')} - \delta_{C}^{A'}\delta_{B}^{(B'}\delta_{A}^{C')}\right)$$

$$(1.17)$$

This rearangement, (1.17), can be represented diagrammatically as in fig (1.1.3)

Figure 1.10: graphmath 7. Diagramatical representation of (1.17).

Multiply (1.14) by $\delta_C^{C'}$ and symmetrize over the upper indices B' and C' to get

$$\delta_A^{A'} \delta_B^{(B')} \delta_C^{C')} - \delta_B^{A'} \delta_A^{(B')} \delta_C^{C')} = -\tilde{\epsilon}_{AB} \tilde{\epsilon}^{A'(B')} \delta_C^{C')}, \tag{1.18}$$

$$A' B'C' A' B'C' A' B'C'$$

$$A' B'C'$$

Figure 1.11: Diagramatical representation of (1.18)

which is expressed diagramatically as fig.(1.1.3)

Using this in fig. (1.1.3) we obtain the equation displayed in fig (1.1.3)

Figure 1.12: graphmath8.

$$\delta_A^{(A'} \delta_B^{B'} \delta_C^{C')} = \delta_A^{A'} \delta_B^{(B'} \delta_C^{C')} + \frac{1}{3} \tilde{\epsilon}_{AB} \tilde{\epsilon}^{A'(B'} \delta_C^{C')} + \frac{1}{3} \tilde{\epsilon}_{AC} \tilde{\epsilon}^{A'(C')} \delta_B^{B')}$$
(1.19)

we obtain

$$\delta_A^{(A'} \delta_B^{B'} \delta_C^{C')} = \delta_A^{A'} \delta_B^{(B'} \delta_C^{C')} + \frac{2}{3} \tilde{\epsilon}_{A(B)} \delta_C^{(C')} \tilde{\epsilon}^{B')A'}$$
(1.20)

Or

$$\delta_A^{(A'} \delta_B^{B'} \delta_C^{C')} = \delta_A^{A'} \delta_B^{(B'} \delta_C^{C')} - \mu_1 \tilde{\epsilon}_{A(B)} \delta_C^{(C')} \tilde{\epsilon}^{B')A'}$$
(1.21)

where

$$\mu_1 = -2/3. \tag{1.22}$$

This is represented in fig (1.1.3)

$$\begin{array}{c} 3 \\ \hline \end{array} = \begin{array}{c} 2 \\ \hline \end{array} \begin{array}{c} 1 \\ \hline \end{array}$$

Figure 1.13: Diagrelfor3. Compact diagrammatical representation of (1.21)

Jones-Wenzl Projectors for Arbitrary n

We now consider the symmetric product of n δ 's. We have:

$$n\delta_{A}^{(A'}\delta_{B}^{B'}\delta_{C}^{C'}\dots\delta_{F}^{F')} = \delta_{A}^{A'}\delta_{B}^{(B'}\delta_{C}^{C'}\dots\delta_{F}^{F')} + \delta_{B}^{A'}\delta_{A}^{(B'}\delta_{C}^{C'}\dots\delta_{F}^{F')} + \dots + \delta_{F}^{A'}\delta_{B}^{(B'}\delta_{C}^{C'}\dots\delta_{A}^{F')}$$

$$= n\delta_{A}^{A'}\delta_{B}^{(B'}\delta_{C}^{C'}\dots\delta_{F}^{F')} - \left(\delta_{A}^{A'}\delta_{B}^{(B'}\delta_{C}^{C'}\dots\delta_{F}^{F')} - \delta_{B}^{A'}\delta_{A}^{(B'}\delta_{C}^{C'}\dots\delta_{F}^{F')}\right) - \dots$$

$$\dots - \left(\delta_{A}^{A'}\delta_{B}^{(B'}\delta_{C}^{C'}\dots\delta_{F}^{F')} - \delta_{F}^{A'}\delta_{B}^{(B'}\delta_{C}^{C'}\dots\delta_{A}^{F')}\right)$$

$$(1.23)$$

This is represented by diagram (graphmath11)

Figure 1.14: graphmath11. Representing equation (1.23).

Multiply (1.14) by $\delta_C^{C'} \cdots \delta_F^{F'}$ and symmetrize over the upper indicies B', C', \dots, F' to get

$$\delta_A^{A'}\delta_B^{(B'}\delta_C^{C'}\dots\delta_F^{F')} - \delta_B^{A'}\delta_A^{(B'}\delta_C^{C'}\dots\delta_F^{F')} = -\tilde{\epsilon}_{AB}\tilde{\epsilon}^{A'(B'}\delta_C^{C'}\dots\delta_F^{F')}$$
(1.24)

This is represented by diagram graphmath 12

Figure 1.15: graphmath12. Diagrammatical representation of (1.24)

Substituting (1.24) into (1.23) we obtain

$$\delta_A^{(A'}\delta_B^{B'}\delta_C^{C'}\dots\delta_F^{F')} = \delta_A^{A'}\delta_B^{(B'}\delta_C^{C'}\dots\delta_F^{F')} + \frac{1}{n}\tilde{\epsilon}_{AB}\tilde{\epsilon}^{A'(B'}\delta_C^{C'}\dots\delta_F^{F')} + \dots + \frac{1}{n}\tilde{\epsilon}_{AF}\tilde{\epsilon}^{A'(F'}\delta_C^{C'}\dots\delta_B^{B')}$$

$$\tag{1.25}$$

We obviously have

$$\underbrace{\tilde{\epsilon}_{AB}\tilde{\epsilon}^{A'(B'}\delta_{C}^{C'}\dots\delta_{F}^{F')} + \tilde{\epsilon}_{AC}\tilde{\epsilon}^{A'(C'}\delta_{B}^{B'}\dots\delta_{F}^{F')}\dots + \tilde{\epsilon}_{AF}\tilde{\epsilon}^{A'(F'}\delta_{C}^{C'}\dots\delta_{B}^{B')}}_{n-1 \text{ terms}}$$

$$= +(n-1)\tilde{\epsilon}_{A(B}\delta_{C}^{C'}\dots\delta_{F}^{(F')}\tilde{\epsilon}^{B')A'}. \tag{1.26}$$

we obtain

$$\delta_{(A}^{A'}\delta_{B}^{B'}\delta_{C}^{C'}\dots\delta_{F)}^{F'} = \delta_{A}^{A'}\delta_{(B}^{B'}\delta_{C}^{C'}\dots\delta_{F)}^{F'} + (n-1)\epsilon_{A(B}\delta_{C}^{C'}\dots\delta_{F)}^{(F'}\epsilon_{B'})^{A'}$$
(1.27)

This is represented in fig (1.1.3)

In compact form we have fig (1.1.3):

1.1.4 Contractions of Symmetrised Lines

We perform a contraction the symmetrised lines as given by fig (1.1.4), and we denote the resulting value Δ_n . For example $\Delta_1 = -2$:

$$\Delta_1 = \delta_A^{A'} \left(\tilde{\epsilon}_{A'C} \delta_D^C \tilde{\epsilon}^{DA} \right) = - \delta_A^{A'} \delta_{A'}^A = -2.$$

As an example, we explicitly work out the value of Δ_2 using the graphical method as shown in fig (graphmath2A). We find that the result is $\Delta_2=3$.

Figure 1.16: graphmath13.

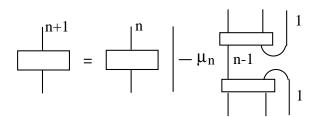


Figure 1.17: .

In order to find the value of Δ_n for n > 2 we derive recursive relations.

$$\Delta_{n+1} = -(2 + \mu_n)\Delta_n$$

Rearranged

$$\mu_n = -\frac{\Delta_{n+1}}{\Delta_n} - 2$$

We know from fig (1.1.3) that $\mu_n = \frac{n-1}{n}$, therefore

$$\begin{split} \Delta_n &= -2\Delta_{n-1} + \frac{n-1}{n}\Delta_{n-1} \\ &= \Delta_{n-1}[\frac{n-1}{n} - 2] \\ &= -\Delta_{n-1}[\frac{n+1}{n}] \end{split} \tag{1.28}$$

Employing this recursive relation we obtain,

$$\begin{bmatrix} A'B' & F' & A' \\ \hline \downarrow & \hline \downarrow & \hline \\ A & B & F \end{bmatrix} \begin{bmatrix} A' & B' \\ B' \\ \hline & F \end{bmatrix} = \begin{bmatrix} n \\ \hline & \hline \\ & \hline \\ & & \hline$$

Figure 1.18: graphmath2. The contraction of the symmetric product of deltas, the resulting values denoted Δ_n .

$$= \frac{1}{2} \left[\begin{array}{c} \\ \\ \\ \end{array} \right] = \frac{1}{2} \left[\begin{array}{c} \\ \\ \\ \end{array} \right] = 3$$

Figure 1.19: graphmath2A. Calculation of Δ_2 .

$$\Delta_{n} = -\Delta_{n-1} \left[\frac{n+1}{n} \right]
= (-1)^{2} \Delta_{n-2} \left[\frac{n}{n-1} \right] \left[\frac{n+1}{n} \right]
= (-1)^{2} \Delta_{n-2} \left[\frac{n+1}{n-1} \right]
= (-1)^{3} \Delta_{n-3} \left[\frac{n+1}{n-2} \right]
\vdots
= (-1)^{n-1} \frac{(n+1)}{2} \Delta_{1}
= (-1)^{n} (n+1)$$
(1.29)

where we have used $\Delta_1 = -2$.

So that

$$\Delta_n = (-1)^n (n+1). \tag{1.30}$$

We derive a recursive relation between $\Delta_{n+2}, \, \Delta_{n+1}$ and Δ_n .

The one contraction of an (n+1)-symmetrised product is proportional to an n-symmetrised product, as shown in fig graphmath3

Figure 1.20: graphmath3A .

Figure 1.21: graphmath3.

By definition of Δ_n , we see that x is given by Δ_{n+1}/Δ_n . (see fig graphmath1) Now, if

$$= \frac{\Delta_{n+1}}{\Delta_n}$$

Figure 1.22: graphmath1.

Figure 1.23: P math4.

it follows that

Figure 1.24: graphmath5.

Hence

Figure 1.25: graphmath6.

Therefore $y = \Delta_n/\Delta_{n+1}$ and the recursion takes the form

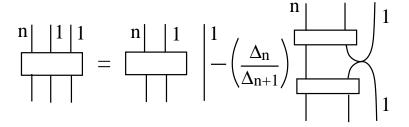


Figure 1.26: P math4.

It follows that

$$\Delta_{n+2} = -2\Delta_{n+1} - \Delta_n \tag{1.31}$$

with $\Delta_1=-2$ and $\Delta_2=3.$ This obviously has a unique solution which is

$$\Delta_n = (-1)^n (n+1), \tag{1.32}$$

as is easily checked:

$$-2\Delta_{n+1} - \Delta_n = -2(-1)^{n+1}(n+2) - (-1)^n(n+1)$$

$$= (-1)^{n+2}[2(n+2) - (n+1)]$$

$$= (-1)^{n+2}(n+3)$$

$$= \Delta_{n+2},$$
(1.33)

with

$$\Delta_1 = (-1)^1 (1+1)$$

$$\Delta_2 = (-1)^2 (2+1).$$

in agreement with calculations we have already performed.

Alternatively, first note that we have the recursion relation between Δ_n and Δ_{n+1}

$$\Delta_{n+1} + \Delta_n = (-1)(\Delta_n + \Delta_{n-1})$$

$$= (-1)^2(\Delta_{n-1} + \Delta_{n-2})$$

$$\cdots$$

$$= (-1)^{n-1}(\Delta_2 + \Delta_1)$$

$$= (-1)^{n-1}(3-2) = (-1)^{n-1}$$
(1.34)

From which we obatin

$$\Delta_{n} = -\Delta_{n-1} + (-1)^{n}
= \Delta_{n-2} + 2(-1)^{n}
= -\Delta_{n-3} + 3(-1)^{n}
\dots
= (-1)^{n-1}(\Delta_{1} + (n-1)(-1)^{n}
= (-1)^{n}(n+1).$$
(1.35)

each containing a turn back.

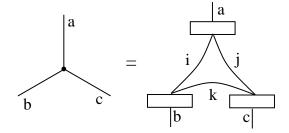


Figure 1.27: Definition of 3-vertex.

1.1.5 **3-Vertices**

We define a 3-vertex as in fig...

The "internal" labels i, j, k are positive integers determined by the external labels a, b, c via

$$i = \frac{a+b-c}{2}$$

$$j = \frac{a+c-b}{2}$$

$$k = \frac{b+c-a}{2}.$$
(1.36)

We consider the "bubble" diagram.

Lemma 1.1.1 The network is zero if $a \neq b$. If a = b, then

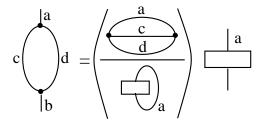


Figure 1.28: P.

Proof:

Assume that a > b.

where

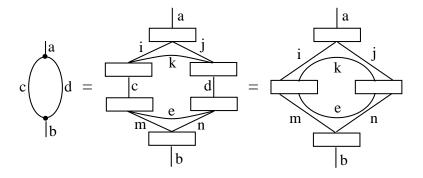


Figure 1.29: graphmath15.

$$i = \frac{a+c-d}{2} \qquad l = \frac{c+d-b}{2}$$

$$j = \frac{a+d-c}{2} \qquad m = \frac{c+b-d}{2}$$

$$k = \frac{c+d-a}{2} \qquad n = \frac{b+d-c}{2}.$$
(1.37)

Rewritting, we find e = (a - b)/2

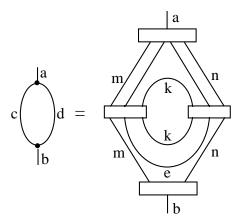


Figure 1.30: graphmath16.

Consider expanding each of the two middle projectors into their sum of products of δ 's. It follows that each term will contain a turn-back with respect to the a-projector above and give zero.

Now assume that a = b. Consider

Hence

and

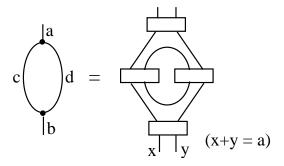


Figure 1.31: graphmath17.

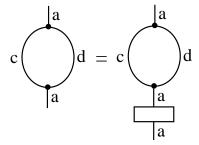


Figure 1.32: graphmath18.

Consider expanding each of the two middle projectors into their sum of products of δ 's. Only straight-ahead terms survive the extra projector at the bottom. Thus

Hence

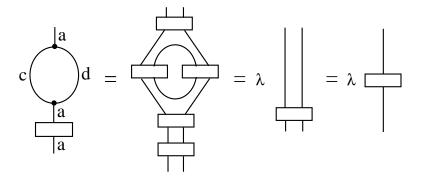


Figure 1.33: graphmath18A.

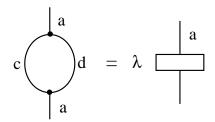


Figure 1.34: graphmath19.

$$N_{abc} \left(\begin{array}{ccc} a & b & c \\ m_a & m_b & m_c \end{array} \right) \tag{1.38}$$

$$N_{abc} = \left[\frac{(a+b-c)!(b+c-a)!(c+a-b)!}{2^2(a+b+c+2)!} \right]^{1/2}$$
 (1.39)

where

$$m = \frac{a+b-c}{2},$$

$$n = \frac{b+c-a}{2},$$

$$p = \frac{a+c-b}{2}.$$
(1.40)

Definition Definition Net(m, n, p) is defined as the diagram on the far right of fig (1.1.2)

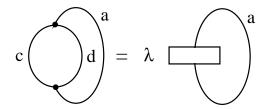


Figure 1.35: graphmath20.

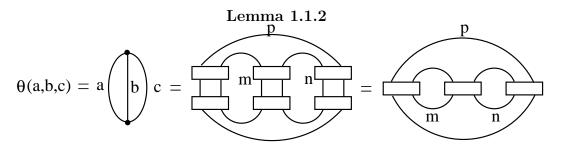


Figure 1.36: graphmath21.

We will now be working to evaluate Net(m, n, p).

In the case p = 0, we get

Figure 1.37: graphmath22.

Net(n-1,1,1) we will need to get the eigenvalue of the area operator. Net(m,n,1)= is easy to deal with.

$$Net(m,n,1) = -(2 + \mu_m + \mu_n) \Delta_{m+n}. \tag{1.42}$$

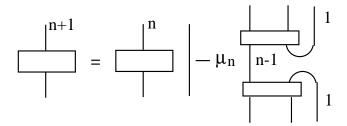


Figure 1.38: This one.

Applying this to Net(m, n, 1) as shown below.

We see that the last term is equivalent to (1.1.5) and so is zero.

The first network is -2Net(m, n, 0), where Net(m, n, 0) has already been calculated in the previous Lemma as Δ_{m+n} . The second and third nets are each equivalent to Net(m, n, 0). The forth network vanishes. Thus

$$Net(m,n,1) = -(2\Delta_{m+n} + \mu_m \Delta_{m+n} + \mu_n \Delta_{m+n}).$$

Definition Let $Net(m, n, p_e, p_i)$, for $p_e + p_i = p - 1 \ge 1$

Lemma 1.1.3 Similarly,

$$\begin{split} Net(m,n,p) &= (-2 - \mu_{m+p-1} - \mu_{n+p-1}) Net(m,n,p-1) \\ &+ \mu_{m+p-1} \mu_{n+p-1} Net(m,n,1,p-2) \end{split}$$

Proof:

The last network is equivalent to Net(m, n, 1, p-2) as demonstrated in fig (1.1.5)

Lemma 1.1.4 We have

$$(a)\ Net(m,n,p-1,0) = (-2 - \mu_m - \mu_n) Net(m,n,p-1)$$

(b)
$$Net(m,n,p_e,p_i) = (-2 - \mu_{m+p_i} - \mu_{n+p_i}) Net(m,n,p-1) + \mu_{m+p_i} \mu_{n+p_i} Net(m,n,p_e+1,p_i-1)$$

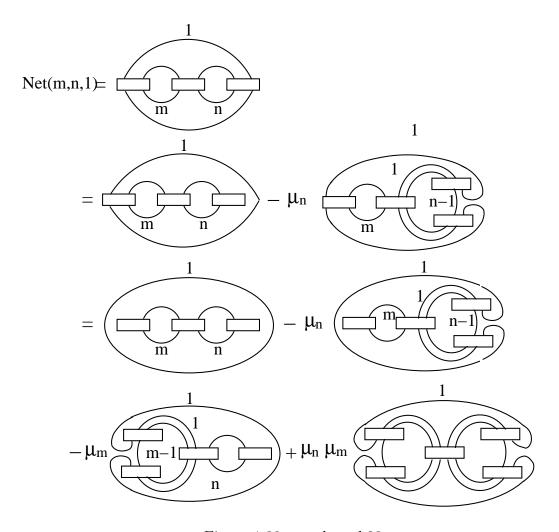


Figure 1.39: graphmath23.

Proof:

The last network is equivalent to $Net(m,n,p_e+,p_i-1)$ as demonstrated in fig (1.1.5).

Recursion relation for Net

(a)
$$Net(m, n, p - 1, 0) = (-2 - \mu_m - \mu_n)Net(m, n, p - 1)$$

(b)
$$Net(m,n,p_e,p_i) = (-2 - \mu_{m+p_i} - \mu_{n+p_i})Net(m,n,p-1) + \mu_{m+p_i}\mu_{n+p_i}Net(m,n,p_e+1,p_i-1)$$

Starting with (1.43) and using (b) over again p-2 times, and then finally using (a) we can obtain a realtion:

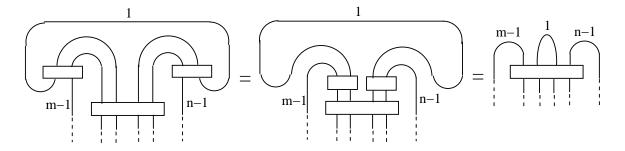


Figure 1.40: graphmath25.

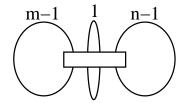


Figure 1.41: graphmath24.

$$Net(m, n, p) = \rho(m, n, p)Net(m, n, p - 1).$$
 (1.44)

To simplify the analysis, we introduce the following. Since $\mu_{m+j} = \Delta_{m-1+j}/\Delta_{m+j}$,

$$-2 - \mu_{m+j} - \mu_{n+j} = \frac{-2\Delta_{m+j}\Delta_{n+j} - \Delta_{m-1+j}\Delta_{n+j} - \Delta_{m+j}\Delta_{n-1+j}}{\Delta_{m+j}\Delta_{n+j}}$$

Write

$$\alpha_{i} = -2\Delta_{m+i}\Delta_{n+i} - \Delta_{m-1+i}\Delta_{n+i} - \Delta_{m+i}\Delta_{n-1+i}$$

and

$$\beta_j = \Delta_{m+j} \Delta_{n+j}$$

First (1.43) becomes

$$Net(m, n, p) = \frac{\alpha_{p-1}}{\beta_{p-1}} Net(m, n, p-1) + \frac{\beta_{p-2}}{\beta_{p-1}} Net(m, n, 1, p-2)$$
 (1.45)

then we would use (b) with $p_e=1$ and $p_i=p-2,$

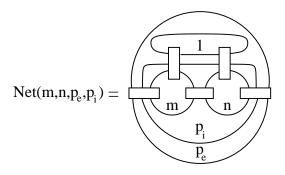


Figure 1.42: graphmath26.

$$Net(m, n, 1, p - 2) = \frac{\alpha_{p-2}}{\beta_{p-2}} Net(m, n, p - 1) + \frac{\beta_{p-3}}{\beta_{p-2}} Net(m, n, 2, p - 3)$$
 (1.46)

and next we would use (b) with $p_e=2$ and $p_i=p-3$,

$$Net(m, n, 2, p - 3) = \frac{\alpha_{p-3}}{\beta_{p-3}} Net(m, n, p - 1) + \frac{\beta_{p-4}}{\beta_{p-3}} Net(m, n, 3, p - 4)$$
 (1.47)

and so on until

$$Net(m, n, p - 3, 2) = \frac{\alpha_2}{\beta_2} Net(m, n, p - 1) + \frac{\beta_1}{\beta_2} Net(m, n, p - 2, 1)$$
 (1.48)

$$Net(m, n, p - 2, 1) = \frac{\alpha_1}{\beta_1} Net(m, n, p - 1) + \frac{\beta_0}{\beta_1} Net(m, n, p - 1, 0)$$

$$= \frac{\alpha_1}{\beta_1} Net(m, n, p - 1) + \frac{\beta_0}{\beta_1} \frac{\alpha_0}{\beta_0} Net(m, n, p - 1)$$
(1.49)

where in the last line we used (a). Putting it together,

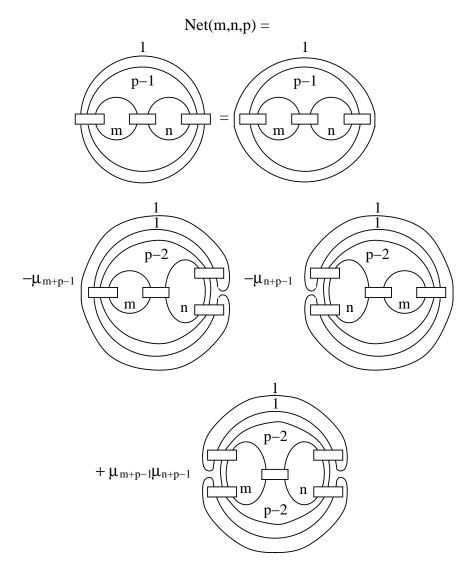


Figure 1.43: Netmnp.

$$Net(m, n, p) = \frac{\alpha_{p-1}}{\beta_{p-1}} Net(m, n, p-1) + \frac{\beta_{p-2}}{\beta_{p-1}} Net(m, n, 1, p-2)$$

$$= (\frac{\alpha_{p-1} + \alpha_{p-2}}{\beta_{p-1}}) Net(m, n, p-1) + \frac{\beta_{p-3}}{\beta_{p-1}} Net(m, n, 2, p-3)$$

$$= (\frac{\alpha_{p-1} + \alpha_{p-2} + \alpha_{p-3}}{\beta_{p-1}}) Net(m, n, p-1) + \frac{\beta_{p-4}}{\beta_{p-1}} Net(m, n, 2, p-4)$$

$$= \cdots$$

$$= \frac{1}{\beta_{p-1}} \left(\sum_{i=0}^{p-1} \alpha_{i}\right) Net(m, n, p-1)$$

$$(1.50)$$

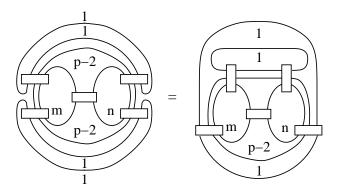


Figure 1.44: Netmn1p-2. Equivalence of last network in fig (1.1.5) with Net(m, n, 1, p-2).

Therefore

$$\rho(m, n, p) = \frac{1}{\beta_{p-1}} \sum_{j=0}^{p-1} \alpha_j.$$
 (1.51)

Or, upon using $\Delta_{k+2} = -2\Delta_{k+1} - \Delta_k$,

$$\rho(m, n, p) = \frac{1}{\Delta_{m+p-1}\Delta_{n+p-1}} \sum_{j=0}^{p-1} \left(-2\Delta_{m+j}\Delta_{n+j} - \Delta_{m+j-1}\Delta_{n+j} - \Delta_{m+j}\Delta_{n+j-1} \right) \\
= \frac{1}{\Delta_{m+p-1}\Delta_{n+p-1}} \sum_{j=0}^{p-1} \left((-2\Delta_{m+j} - \Delta_{m+j-1})\Delta_{n+j} - \Delta_{m+j}\Delta_{n+j-1} \right) \\
= \frac{1}{\Delta_{m+p-1}\Delta_{n+p-1}} \sum_{j=0}^{p-1} \left(\Delta_{m+j+1}\Delta_{n+j} - \Delta_{m+j}\Delta_{n+j-1} \right) \\
= \frac{1}{\Delta_{m+p-1}\Delta_{n+p-1}} \left(\Delta_{m+1}\Delta_{n} - \Delta_{m}\Delta_{n-1} \right) \\
\Delta_{m+2}\Delta_{n+1} - \Delta_{m+1}\Delta_{n} \\
\Delta_{m+3}\Delta_{n+2} - \Delta_{m+2}\Delta_{n+1} \\
\dots \\
\Delta_{m+j+1}\Delta_{n+j} - \Delta_{m+j}\Delta_{n+j-1} \\
\dots \\
\Delta_{m+p-1}\Delta_{n+p-2} - \Delta_{m+p-2}\Delta_{n+p-3} \\
\Delta_{m+p}\Delta_{n+p-1} - \Delta_{m}\Delta_{n-1} \\
\Delta_{m+p-1}\Delta_{n+p-1}\Delta_{n+p-2} \right) \\
= \frac{\Delta_{m+p}\Delta_{n+p-1} - \Delta_{m}\Delta_{n-1}}{\Delta_{m+p-1}\Delta_{n+p-1}} (1.52)$$

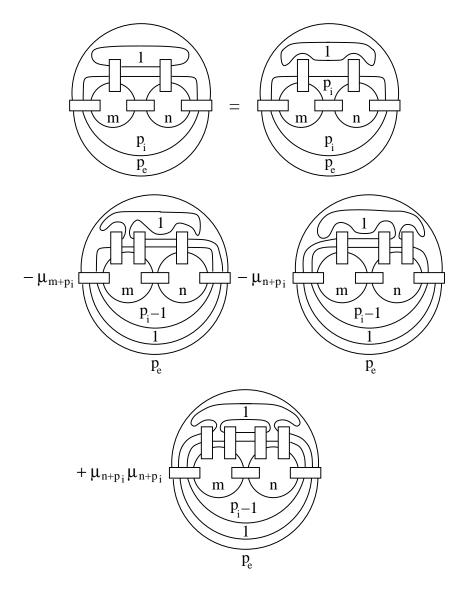


Figure 1.45: Netmpepi.

We can simplify futher,

$$\begin{split} \Delta_{m+p} \Delta_{n+p-1} - \Delta_m \Delta_{n-1} &= (-1)^{m+p} (m+p+1) (-1)^{n+p-1} (n+p) - (-1)^m (m+1) (-1)^{n-1} n \\ &= (-1)^{m+n+2p-1} [(m+p+1)(n+p) - (m+1)n] \\ &= (-1)^{m+n+2p-1} [np + (m+p+1)p] \\ &= (-1)^{m+n+p} (m+n+p+1) (-1)^{p-1} p \\ &= \Delta_{m+n+p} \Delta_{p-1} \end{split} \tag{1.53}$$

Therefore

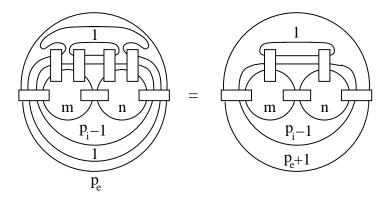


Figure 1.46: Netmpe+1pi-1.

$$\rho(m, n, p) = \frac{\Delta_{m+n+p} \Delta_{p-1}}{\Delta_{m+p-1} \Delta_{n+p-1}}$$
(1.54)

Denote

$$\Delta_n! := \Delta_n \Delta_{n-1} \Delta_{n-2} \dots \Delta_1.$$

For $\theta(a, b, c)$,

$$\theta(a,b,c) = \rho(m,n,p)Net(m,n,p-1)$$

$$= \left(\prod_{j=1}^{p} \rho(m,n,j)\right)Net(m,n,0)$$

$$= \left(\prod_{j=1}^{p} \rho(m,n,j)\right)\Delta_{m+n}$$
(1.55)

Hence, by (1.54)

$$\theta(a,b,c) = \prod_{j=1}^{p} \left[\frac{\Delta_{m+n+j} \Delta_{j-1}}{\Delta_{m+j-1} \Delta_{n+j-1}} \right] \Delta_{m+n}
= \frac{\left(\Delta_{m+n+p} \Delta_{m+n+p-1} \cdots \Delta_{m+n} \right) \Delta_{p-1}!}{\left(\Delta_{m+p-1} \Delta_{m+p-2} \cdots \Delta_{m} \right) \left(\Delta_{n+p-1} \Delta_{n+p-2} \cdots \Delta_{n} \right)}
= \frac{\Delta_{m+n+p}! \Delta_{n-1}! \Delta_{m-1}! \Delta_{p-1}!}{\Delta_{m+p-1}! \Delta_{m+p-1}! \Delta_{m+n-1}!}$$
(1.56)

The minus signs in the factorial simplifies as follows

$$\Delta_{m+n+p}! = (-1)^{m+n+p}(m+n+p+1)(-1)^{m+n+p-1}(m+n+p)\cdots(-1)^{1}2!
= (-1)^{(m+n+p)+(m+n+p-1)+\cdots+1}(m+n+p+1)!
= (-1)^{(m+n+p)(m+n+p+1)/2}(m+n+p+1)!$$
(1.57)

So that we get

$$\Delta_{m+n+p}! = (-1)^{(m+n+p)(m+n+p+1)/2} (m+n+p+1)!$$

$$\Delta_{m+n-1}! = (-1)^{(m+n-1)(m+n)/2} (m+n)!$$

$$\Delta_{m-1}! = (-1)^{(m-1)m/2} m!$$
(1.58)

Collecting the exponents of (-1) in (1.56) is

$$\frac{1}{2} \left[(m+n+p)(m+n+p+1) + (n-1)n + (m-1)m + (p-1)p + (m+p-1)(m+p) + (n+p-1)(n+p) + (m+n-1)(m+n) \right]
+ (m+p-1)(m+p) + (n+p-1)(n+p) + (m+n-1)(m+n) \right]
= \frac{1}{2} \left[(m+n+p)^2 + n^2 + m^2 + p^2 + (m+p)^2 - (m+p) + (n+p)^2 - (n+p) + (m+n)^2 - (m+n) \right]
= \frac{1}{2} \left[(m^2 + n^2 + p^2 + 2mn + 2mp + 2np) + n^2 + m^2 + p^2 + (m+p)^2 + 2n^2 + 2p^2 + 2mp + 2np + 2mn - 2(m+n+p) \right]
= 2m^2 + 2n^2 + 2p^2 + 2mn + 2np + 2pm - m - n - p \equiv m+n+p+2k.$$
(1.59)

where k is an integer.

Therefore,

$$\theta(a,b,c) = \frac{(-1)^{m+n+p}(m+n+p+1)!m!n!p!}{(m+n)!(n+p)!(m+p)!}$$
(1.60)

where

$$m = \frac{a+b-c}{2},$$

$$n = \frac{b+c-a}{2},$$

$$p = \frac{a+c-b}{2}.$$
(1.61)

$$m + p = 2a$$

 $m + n = 2b$
 $n + p = 2c$
 $m + n + p = 2a + 2b + 2c$. (1.62)

TET

Recoupling formula

$$a > \frac{c}{d} = \sum_{i} \left\{ \begin{array}{c} a \ b \ i \\ c \ d \ j \end{array} \right\} a = \sum_{i} \left\{ \begin{array}{c} a \ b \ i \\ c \ d \ j \end{array} \right\} a$$

Figure 1.47: recouplefig. The recoupling equation

The tetrahedron network.

$$\underbrace{\begin{pmatrix} b & i & c \\ i & c \\ a & j & d \end{pmatrix}}_{i} = \underbrace{\begin{pmatrix} a & b & i \\ c & d & j \end{pmatrix}}_{c} = Tet \begin{bmatrix} a & b & i \\ c & d & j \end{bmatrix}$$

Figure 1.48: TetDef.

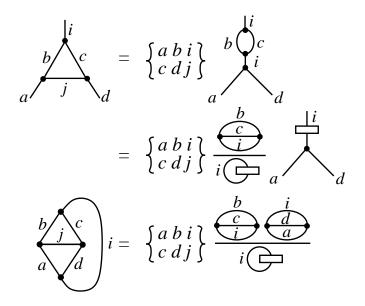


Figure 1.49: 6jandTET.

The tetrahedron formula for recoupling theory.

The evaluation of the tetrahedron network.

$$\left\{ \begin{array}{ccc} a & b & i \\ c & d & j \end{array} \right\} = \frac{Tet \left[\begin{array}{ccc} a & b & i \\ c & d & j \end{array} \right] \Delta_i}{\theta(a,d,i)\theta(b,c,j)} \tag{1.63}$$

$$Tet \begin{bmatrix} A & B & E \\ C & D & F \end{bmatrix} = \frac{\mathcal{I}}{\mathcal{E}} \sum_{m \le S \le M} \frac{(-1)^S (S+1)!}{\prod_i (S-a_i)! \prod_j (b_j - S)!}$$
(1.64)

where

$$a_{1} = \frac{A+D+E}{2}, \qquad b_{1} = \frac{B+D+E+F}{2}$$

$$a_{2} = \frac{B+C+E}{2}, \qquad b_{2} = \frac{A+C+E+F}{2}$$

$$a_{3} = \frac{A+B+F}{2}, \qquad b_{3} = \frac{A+B+C+D}{2}$$

$$a_{4} = \frac{C+D+F}{2}, \qquad M = \min\{b_{j}\}$$

$$\mathcal{E} = A!B!C!D!E!F!, \qquad \mathcal{I} = \prod_{ij} (b_{j} - a_{i})!. \qquad (1.65)$$

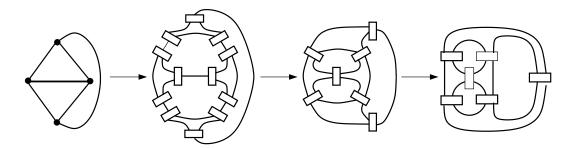


Figure 1.50: Tetfig2.

The 6j-sybols have a number of properties including the orthogonal identity

$$\sum_{l} \left\{ \begin{array}{ccc} a & b & l \\ c & d & j \end{array} \right\} \left\{ \begin{array}{ccc} d & a & i \\ b & c & l \end{array} \right\} = \delta_{i}^{j} \tag{1.66}$$

and the Biedenharn-Elliot or Pentagon identity

$$\sum_{l} \left\{ \begin{array}{ccc} d & i & l \\ e & m & c \end{array} \right\} \left\{ \begin{array}{ccc} a & b & f \\ e & l & i \end{array} \right\} \left\{ \begin{array}{ccc} a & f & k \\ d & d & l \end{array} \right\} = \left\{ \begin{array}{ccc} a & b & k \\ c & d & i \end{array} \right\} \left\{ \begin{array}{ccc} k & b & f \\ e & m & c \end{array} \right\} \tag{1.67}$$

The reduction formula

$$\begin{array}{c}
\downarrow i \\
\downarrow j \\
\downarrow a \\
\downarrow d
\end{array} = \begin{array}{c}
\downarrow j \\
\downarrow j \\
\downarrow d
\end{array}$$

Figure 1.51: reductfigs.

$$2 \underbrace{\begin{pmatrix} p & r \\ q & r \end{pmatrix}}_{q} = \frac{Tet \begin{bmatrix} p & p & r \\ p & q & r \end{bmatrix}}{\begin{pmatrix} p & r \\ q & r \end{pmatrix}} \underbrace{\begin{pmatrix} p & p & r \\ p & q & r \end{pmatrix}}_{q}$$

Figure 1.52: reductfigs2.

Change of basis for 4-valent spin networks.

(1)

Answers:

Rotate the network on the RHS by clockwise and apply the recoupling identity again.

Figure 1.53: recoupfig2. Proof of the orthogonality identity.